New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Unit 2 Exam Study Guide

by: Liam Murphy

Unit 2 Exam Study Guide BIO 311D

Marketplace > University of Texas at Austin > Biology > BIO 311D > Unit 2 Exam Study Guide
Liam Murphy

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Study Guide for Dr. Bierner's Exam Two
Introductory Biology II
Dr. Mark Bierner
Study Guide
Bio 311D, Bierner, biology ii, University of Texas, Exam 2, unit 2, Study Guide, review
50 ?




Popular in Introductory Biology II

Popular in Biology

This 25 page Study Guide was uploaded by Liam Murphy on Saturday March 5, 2016. The Study Guide belongs to BIO 311D at University of Texas at Austin taught by Dr. Mark Bierner in Winter 2016. Since its upload, it has received 283 views. For similar materials see Introductory Biology II in Biology at University of Texas at Austin.


Reviews for Unit 2 Exam Study Guide


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 03/05/16
~BIOLOGY 311D EXAM TWO~ SECTIONS 25.3, 26.1, & 26.2: History of Life on Earth; Phylogeny Vocab:  Phylogeny: the evolutionary history of a species/group of species Stromatolites: solid structure created by single­celled microbes called cyanobacteria  (blue­green algae). The cyanobacteria form colonies and trap sediment with their sticky  surface coatings. The trapped sediment reacts to calcium carbonate in the water to form  limestone (fossilized record of early prokaryotes) Autotrophic prokaryotes: An organism capable of synthesizing its own food from  inorganic substances, using light or chemical energy Serial endosymbiosis theory: the notion that complex living cells results from  evolutionary processes in which earlier cells merge in a series of successive  combinations to eventually form larger, more complex molecules  Cyanobacteria: phylum of bacteria that obtain their energy through photosynthesis Endosymbiont theory of how eukaryotic features evolved from prokaryotic cells: Snowball Earth Hypothesis: suggest that earth's land and ocean were covered from ice to the poles to the equator during at least two extreme cooling events between 2.4 billion and 58 million years ago, evidence is found in old rocks that preserved signs of earth's ancient magnetic field Taxonomy: classification of organisms Systematics: the study of and classification of organisms with the goal of reconstructing their evolutionary history and relationships (ex: phylogenetic classification) Binomial nomenclature: the system of nomenclature in which two terms are used to denote a species of living organism, PhyloCode: taxonomy all based off of taxonomy (but not that easy and used that much) Homologous: (of organs) similar in position, structure, and evolutionary origin but not necessarily in function Morphological homology: A structure found in two (or more) different species, but derived from a common ancestral structure is said to be homologous in those species. The structure may or may not be used for the same function in the species in which it occurs. Analogous: (of structures) performing a similar function but having a different evolutionary origin, such as the wings of insects and birds Key Concepts:  Key events in life’s history include the origin of single­celled and multicelled  organisms and the colonization of land  Phylogenies show evolutionary relationships  Phylogenies are inferred from morphological and molecular data and these  analyses can reflect evolutionary relationships only if the characters used result  from common ancestry  Do not assume the taxon on the phylogenetic tree evolved from the taxon next to it  Phylogenies are inferred from morphological and molecular data   These analyses can reflect evolutionary relationships only if the characters used  result from common ancestry   It is not always easy to tell whether two DNA sequences are homologous, especially if deletions and insertions have occurred over time Overview:  First single­celled organisms appeared on Earth approximately 3.5 billion years  ago. About 3 billion years elapsed before the colonization of land occurred  approximately 5 million years ago  Phylogeny is the evolutionary history of a species or group of species  To construct phylogenies, biologists use systematics, a discipline focused on  classifying organisms and determining their evolutionary relationships  Humans are more related to mushrooms and mushrooms and flowers  There is fossil evidence that cyanobacteria and other photosynthetic prokaryotes  coated damp territorial surfaces well over a billion years ago.  However, larger  forms of life did not begin to colonize land until about 500 million years ago  Phylogenies show evolutionary relationships  Questions:  Tell me about major evolutionary events depicted in the picture? (Slide 14) o Depicts earth’s begin and when each vital event occurred, ending with the production of humans  After the origin of earth, prokaryotes (bacteria and archaea)  A billion and a half years without eukaryotes  Eukaryotes: linear DNA organized into chromosomes and  completed with proteins called histones o Evolution is a long overall process   What does it tell you about understanding evolutionary  biology and understanding the concept of time in  evolution? o Everything is connected and related to one another   What were the first single­celled organisms, and where  does the earliest evidence from their origin come from? o Prokaryotes, formed from earth's volcanic existing conditions   For how long were prokaryotes the only life forms on  Earth? o Around 1 and a half billion years o Prokaryotes were heterotrophs (molecules in oceans stay alive,  metabolize, and get their energy) o Needed photosynthetic prokaryotes to create oxygen  What’s the relationship between the evolution of  photosynthesis and the appearance of atmospheric  oxygen? o Photosynthesis: H2O + CO2 + sunlight à CH20 + O2 o No oxygen in water yet, so now oxygen gets in water. First oxygen  combines with iron creates iron oxide, eventually oxygen building up in  the water becomes more oxygen saturated, High to low concentration,  oxygen gets to atmosphere and changes  What are cyanobacteria and what was their role?  What did the increase in atmospheric oxygen mean for the  evolution of prokaryotic organisms? (Slide 22)  When did the first single­celled eukaryotes appear? o 2.1 billion years ago  What are the defining features of eukaryotic cells?  What is the endosymbiont theory of how eukaryotic  features evolved from prokaryotic cells?  What is the hypothesis of serial endosymbiosis? (Slide 28)  What is the evidence for the endosymbiotic origin of  mitochondria and plastids?  What did the evolution of multicellularity make possible?  Why were multicellular eukaryotes limited in size and  diversity until the late Proterozoic (ca 570 MYA)?  What is the “snowball Earth” hypothesis?  What was the Cambrian explosion (535 to 525 MYA)?  What sorts of adaptations were associated with the  colonization of land by plants?  What was the deal with fungi?  What was the deal with arthropods?  What was the deal with tetrapods?  When did humans show up?  195,000 years ago  What is taxonomy?  What is systematics?  What is binomial nomenclature?  What is the first part of a binomial?  What is the second part of a binomial?  What are the advantages of using Latin or Latinized  names?  What does this diagram show? (Slide 57)  How is the term taxon (plural, taxa) used?  Why do we classify organisms at all?  How was this type of classification done classically?  Such a method of classifying organisms may reflect  relatedness, but does it necessarily reflect evolutionary  history?  What does a phylogenetic tree purport to show? (Slide 62)  Once again, what is systematics?  A phylogenetic tree represents a hypothesis about  evolutionary relationships. Why would we call this a  hypothesis?  Label slides 67 through 73.  What is a branch point?  Where lineages diverge  What is a polytomy?  An unresolved pattern of divergence  What are sister taxa?  What is a basal taxon?  What does a rooted tree mean?  Phylogenetic trees are intended to show BLANK, not  BLANK.  Patterns of descent  Phenotypic similarity  Are crocodiles more closely related to lizards or to birds?  (Slide 78)  What do crocodiles look more like?  Do tree branches indicate actual (absolute) ages of  particular taxa? o No  What does the tree tell you about the most recent common ancestor of the gray wolf and the European otter versus  the most recent common ancestor of the gray wolf and the  coyote? (Slide 82)  What does the tree tell you about when the wolf and  European otter evolved?  Should you assume that a taxon on a phylogenetic tree  evolved from the taxon next to it? o No  What does this really indicate about gray wolves and  coyotes? Did gray wolves evolve from coyotes? Did  coyotes evolve from gray wolves? What was their common ancestor? (Slide 88)  What do we mean by homology in general?  What does this show about morphological homology?  (Slide 100)  Although the whale flipper and bat wing look quite  different, how can we tell they are homologous?  If we were to look at gene sequences and other DNA  sequences from these organisms, what do you think we  would find?  What do you think we would find if we were to compare  DNA sequences from whales to DNA sequences from  sharks? (Slide 103)  What do you think we would find if we were to compare  DNA sequences from bats to DNA sequences from  butterflies? (Slide 104)  What do you think we would find if we were to compare  DNA sequences from bats to DNA sequences from birds?  (Slide 105)  As flying organs, what’s the deal with bat wings and bird  wings?  As swimming organs, what’s the deal with whale fins and  shark fins?  So as swimming organs, whale and shark fins are BLANK  and the result of BLANK. o Analogous o  Likewise, as flying organs, bat wings, bird wings, and  butterfly wings are BLANK and the result of BLANK. o Analogous o  What the deal with the Australian “mole” and the North  American mole? (Slide 111)  Back to bat wings and bird wings. They are homologous as limbs, but they are analogous as flying organs. How about  cats? How do they fit in?  Are bats more closely related to birds or cats? (Slide 114)  What are analogous structures that arose independently?  What do you think we get if we mistakenly use analogies  as if they are homologies in phylogenetic analysis?  When are morphological structures more likely to be  homologous?  When are genes more likely to be homologous?  Would you say that these sequences are homologous?  (Slide 120)  How about this? (Slide 122)  How about now? What is this process called? (Slide 123)  What would you say about these sequences? (Slide 124) SECTIONS 35.1, 35.2 and FIGURE 29.3: Being a Plant Vocab:  Sporophyte: the form of a plant in the alternation of generations that produces asexual  spores  Gametophyte: the sexual form of a plant in the alternation of generations  Sporangium: an enclosure in which spores are formed. It can be composed of a single cell or can be multicellular Archegonia: a multicellular structure or organ of the gametophyte phase of certain plants, producing and containing the ovum or female gamete (sex organs) à eggs Antheridia: a haploid structure or organ producing and containing male gametes (called  antherozoids or sperm) Apical meristem: at the tip of a plant shoot or root that produces auxin and causes the  shoot or root to increase in length. Growth that originates in the apical meristem is  called primary growth Tissue: distinct type of material group of specialized cells that are involved with one  function in making one product Organ: self contained that has one specific vital function Taproot: the long root of the plant, that is a main central root that originated from the  main root that was pulled off the seed Lateral roots: the smaller roots branching out from the taproot Root hairs: small roots that grow off the tips of the roots, and they help increase the  plant's underground surface area Prop roots: involved with stabilization (found in corn plants) Storage roots: store things, like carbohydrates in the form of starch  (ex: beets) Pneumatophores: plants that grow in water, so their roots come up and out of the water to obtain oxygen Buttress roots: due to lack of light in the ground, the tree’s roots draw minerals out of  ground and up to canopy, and the root system is shallow do they have the roots grow out  of ground  Nodes: leaves attached to the stem Internodes: in between the nodes Internodes: part of the plant stem between the two nodes Axillary bud: bud on top of the plant Apical bud: bud in between the stem and the branching off leaves Apical dominance: the phenomenon whereby the main, central stem of the plant is  dominant over (i.e., grows more strongly than) other side stems; on a branch the main  stem of the branch is further dominant over its own side branchlets Blade: the leaf looking part, the broad portion Petiole: part of the plant that connects the leaf to the stem of the plant Tendrils: plants that have weak stems, so things that need to reach more light have this  (climbing stuff) Spines: protection (cactus have) Storage leaves: storage product Epidermis: a thin layer of cells forming the outer integument of seed plants and ferns Cuticle: a very thin hyaline film covering the surface of plants, derived from the outer  surfaces of the epidermal cells Periderm: the cork­producing tissue of stems together with the cork layers and other  tissues derived from it Trichomes: an outgrowth from the epidermis of plants, as a hair. Xylem: the part of a vascular bundle consisting of sieve tubes, companion cells,  parenchyma, and fibers and forming the food­conducting tissue of a plant Phloem: the part of a vascular bundle consisting of sieve tubes, companion cells,  parenchyma, and fibers and forming the food­conducting tissue of a plant Pith: The soft, spongy tissue in the center of the stems of most vascular plants, consisting  mainly of parenchyma Cortex: issue of unspecialized cells lying between the epidermis (surface cells) and the  vascular, or conducting, tissues of stems and roots Indeterminate growth: plant growth in which the main stem continues to elongate  indefinitely without being limited by a terminal inflorescence or other reproductive  structure Determinant growth: plant growth in which the main stem ends in an inflorescence or  other reproductive structure and stops continuing to elongate indefinitely with only  branches from the main stem having further and similarly restricted growth Apical meristems: cylindrical layer of cambium that runs through the stem of a plant that  undergoes Primary growth:growth in vascular plants, especially an increase in length, that results  from cell division and differentiation of an apical meristem Secondary growth: an increase in the thickness of the shoots and roots of a vascular plant  as a result of the formation of new cells in the cambium Lateral Meristems: meristem where secondary growth occurs Cork cambium: A lateral ring of meristematic tissue found in woody seed plants,  producing cork on the outside of the ring and phelloderm on the inside of the ring Vascular cambium: cylindrical layer of cambium that runs through thestem of a plant that undergoes secondary growth  Key Concepts:  Many of the adaptations that appear to have emerged after land plants diverged  from their algal relatives facilitated survival and reproduction on dry land.  Plants have a hierarchal organization consisting of organs, tissues, and cells.  Different meristems generate new cells for primary and secondary growth.  All three basic plant organs, roots, stems, and leaves, are composed of dermal,  vascular, and ground tissues  Different meristems generate new cells for primary and secondary growth Questions:  If the presence of land plants has enabled other life forms like animals to survive  on land, what do animals get from plants? o  What are the four key traits of land plants? o Alternation of generations and multicellular, dependent embryos o Walled spores produced in sporangia o Multicellular gametangia o Apical meristems  Explain alternation of generations (Slide 17). o    Where is meiosis occurring? o  What process is giving rise to gametes? o  What process is giving rise to the zygote? o  Where is the embryo developing? o  Explain slide 25. o  What does alternation of generations have to do with adaptations for surviving on  land? o  What is a sporangium? o  Where are sporangia found? o  By what process do sporangia produce spores? o  What does the spore wall do? o  What does all of this have to do with surviving on land? o  What are archegonia? o  What are antheridia? o  What process produces eggs and sperm? o  Where does fertilization take place? o  Where does the embryo develop? o  What does all of this have to do with adaptations for surviving on land? o  How does a plant get its food? o  Where does this occur? o  How does a plant get its water and mineral nutrients? o  Where does that happen? o  What are apical meristems? o  What is growth like in plants compared to animals? o  How are growing tips protected? o  What does all of this have to do with adaptations for surviving on land? o  What is a tissue? o  What is an organ? o  What are the functions of roots? o  What is a taproot? o  What are lateral (branch) roots? o  What are root hairs and what do they do? o  What are prop roots? o  What are storage roots? o  What are strangling aerial roots? o  What are pneumatophores? o  What are buttress roots? o  What are the functions of stems? o  What are nodes? o  What are internodes?   What’s an axillary bud?   What’s an apical bud?   What is apical dominance?   What are rhizomes?   What are tubers?   What are stolons?   What are the functions of leaves?   What is the blade?   What is the petiole?   Note the differences between simple leaves and compound leaves (Slides 78/79).   How do tendrils help the leaves?   What are spines?   What are storage leaves?   What are reproductive leaves?   What is the dermal tissue system?   What is the epidermis?   What is the cuticle?   What is the periderm?   What are trichomes?   What’s the story with marjoram trichomes?   What are the functions of the vascular tissue system?   What is xylem?   What is phloem?   What are the functions of the ground tissue system?   What is pith?   What is cortex?   Tell me about parenchyma cells in a privet leaf (Slide 103).   Explain collenchyma cells (Slide 104).   What are sclerenchyma cells? (Slide 105) o Sclereid cells o Fiber cells  Explain xylem cells (Slide 106).   Tell me about phloem cells (Slide 107).   New cells are generated for what? o Different meristems generate new cells for primary and secondary growth  What is indeterminate growth?   What is determinate growth?   What are apical meristems?   What is primary growth?   What is secondary growth?   What are lateral meristems?   What is the cork cambium?   What is the vascular cambium? SECTIONS 35.5, 39.1, and 39.2: Plant Structure, Growth, and Responses Vocab:  Development: all of the changes that occur as tissues, organs, and organisms come into  existence Environmental plasticity: when a single genotype can produce different phenotypes in  different environments Growth: expansion in size  Morphogenesis: the shape of and the types of cells within the tissues, organs, and  organisms and how that all happens Cell Differentiation: change in what the cells are like from one another Transverse division: division across the cell, growth in length Longitudinal division: division up and down the cell, growth in width Symmetry of cell division: two cells that are identical to one another is produced from  this Asymmetrical cell division: general give a signal that you are about to see some form of  differentiation and it establishes polarity Cellulose microfibrils: the fundamental structural unit of the cell wall. It is made of an  inner core of about fifty parallel chains of cellulose and other polymers in a  paracrystalline   array  Pattern formation: the way in which complex patterns are formed  Phase Changes: a change from one state (solid or liquid or gas) to another without a  change in chemical composition Protein Kinases: An enzyme that catalyses the transfer of a phosphate group from ATP to an intracellular protein, thereby affecting the biological activity of the protein De­etiolation response proteins: Once a shoot reaches the sunlight, its morphology and  biochemistry undergo profound changes, collectively also called greening Hormone: a chemical substance produced by your body that influences its growth,  development, and condition Tropism: response or orientation of a plant or certain lower animals to a stimulus that acts with greater intensity from one direction than another Phototropism: the growth response of plant parts to the stimulus of light, producing a  bending towards the light source Key Concepts:  Growth, morphogenesis, and cell differentiation produce the plant body  Signal transduction pathways link signal reception and response  Plant hormones help coordinate growth, development, and responses to stimuli  A single genotype can produce different phenotypes in different environments  The three overlapping processes involved in the development of a multicellular  organism are growth, morphogenesis, and differentiation  The plane of cell division refers to development of the new cell wall that bisects a  plant cell during cytokinesis  Although the plane of cell division does not determine the shape of plant organs,  the symmetry of cell division is important in determining cell fate  asymmetrical division also plays a role in establishment of polarity   Growing plant cells expand mainly through water uptake and “packaging” of  water in the large central vacuole of the cells  During morphogenesis, cells acquire different identities in an ordered spatial  arrangement. o  Position has a lot do with what something is going to become during  differentiation  Experimental work has shown that a plant cell’s fate is established late in  development and largely depends on signaling from neighboring cells  Flower function involves a phase change from vegetative growth to reproductive  growth o This phase change involves the conversion of indeterminate vegetative  meristems to determinate floral meristems and is associated with the  switching on of floral meristem identity genes.  By studying mutants with abnormal flowers, researchers have identified three  classes of floral identity genes o A →  sepals o  A + B → petals o  B + C → stamens o  C →  carpels o Loss of A → no sepals or petals o Loss of B →  no petals or stamens o Loss of C →  no stamens or carpels o If A is missing, C takes its place o If C is missing, A takes its place  Animals, being mobile, respond to stimuli mainly by moving toward positive  stimuli and away from negative stimuli  Plants, being stationary, generally respond to environmental cues by adjusting  their individual patterns of growth and development  Signal transduction pathways link signal reception to response o  Reception →  transduction →  Response o (hormone to receptor) à (relay proteins/ 2  messengers) à (activation of  cellular responses)  In the de­etiolation of potatoes, the light signal is detected by the phytochrome  receptor, and after the stimulus has been detected, transduction is initiated by  second messengers   Because of some significant differences between animals and plants, some people  prefer the term plant growth regulator.  However, the term hormone is of such  long standing that we will use that term here Questions:  What does the term development mean? o Increase in complexity o Series of processes that occur as cells go to tissues, tissues go to organs,  organs, go to organisms  What factors affect development? o environment and genetics (programming)   When a single genotype produces different phenotypes in different environments? o developmental plasticity o individual when it is exposed to different local environmental conditions,  not populations  Explain what’s going on in slide 12. o leaf differences (leaves come from buds/meristems) o one organism has two different environmental conditions o underwater leaves are branching, while leaves exposed to air are shaped  differently  How do we define growth? o getting larger, irreversible, increase in size  What is morphogenesis? o origin of shape o looking at what the shapes of tissues/organs/organisms are o position and cell types within the tissues/organs/organisms  What is cell differentiation? o process by which genetically identical cells become different from one  another  What does the plane of cell division refer to? o Development of the new cell wall that bisects a plant cell during  cytokinesis  What is cytokinesis? o splitting of cell i.e. cell division  What is transverse division and what does it lead to in leaf growth? o transverse=across o across the middle of the cell o gives rise to cell elongation, increase in length  What is longitudinal division and what does it lead to in leaf growth? o longitudinal=along the length o gives rise to growth in width  Do mutations affecting the plane of division affect leaf shape? o No, you can have mutations in the types of cells that produce organs, but it really doesn’t affect leaf shape, but it can slow leaf growth down  Although the plane of cell division does not determine the shape of plant organs,  what is important? o The symmetry of cell division is important in determining the cell fate  What is symmetry of cell division? o two cells are of equal volume and size  What is asymmetrical cell division and what does it signal? What’s the story with  guard cells shown in slide 28? o cells will be different sizes o signals cell differentiation (some cells go in one direction, others in a  different way) o guard cells form a stoma, if they swell up, they take on an opening in their  shape? o epidermal cell from developing leaf goes through asymmetrical division  one becomes regular epidermal, other turns into mother guard cell  mother guard cell divides symmetrically and turns into two  identical guard cells  What is the first cell division of a plant zygote like? o asymmetrical  What does the establishment of polarity lead to in plants? o two poles in a plant, one goes up (shoots), one does down (roots) o if it was symmetrical, there would be no differentiation  What happens if the first cell division of a plant zygote is symmetrical instead  (gnom mutant)? o it does not develop because there are no shoots, no roots, no polarity  What happens to an animal cell as it grows? o organelles and cytoplasm increases o lots of energy is required and used  What is the usual orientation of cell growth and how is that determined? o put seed in ground, it germinates, shoot starts going up o most of the stem growth is in length, not as much in width o cell division usually by transverse division so length increases o determined by cellulose microfibrils  What are cellulose microfibrils? o inside of cell wall next to plasma membrane o wrap around stems horizontally and leaves top and bottom open, so the  plant is constrained and grows up and down, not out to the sides o cell wall gives plants rigidity  What occurs during morphogenesis? o Cells acquire different identities in an ordered spatial arrangement o structures are located in particular places o cells to outside differentiates=BLANK o cells to inside differentiates=BLANK  What is spatial arrangement? o  What is pattern formation o different parts and where they are located, plants have order too o humans are bilaterally symmetrical and everything is attached correctly  Explain what’s going on in the gene KNOTED­1 on slide 45. o  Given that the cells of a developing organism share a common genome, what  controls differentiation? o Gene expression o Final position of a cell in a developing organ (more in plants than animals) o which genes are turned on or off o signaling from neighboring cells o hormones could trigger  What does cell­to­cell communication have to do with this? (Slide 50) o staining shows whether a gene is being expressed in epidermal cells  o GLABRA controls root hair expression  not expressed­cell will develop root hair  expressed­cell will be non­hairy  What’s the deal when an epidermal cell borders 1? What about 2? (Slide 51) o epidermal cells can be turned into root hairs o borders only one cortex cell­expression of GLABRA gene o borders two cortex cells­  What are phase changes? o pre­reproduction phase to reproductive phase to post­reproductive phase o zygote to embryo to fetus to infant to child to adolescent to adult  Explain slide 54. o in a plant, the juvenile part of a plant is located on bottom o nodes are more juvenile toward bottom and were put down in first phase o juvenile versus mature leaf shapes differ o plants go through developmental phases just like animals  What occurs for flower functioning? o Phase change from vegetative growth to reproductive growth o Conversion of indeterminate vegetative meristems to determinant floral  meristems and is associated with the switching on of floral meristem  identity genes  Explain floral organs and their arrangement. (Slide 61) o tip ends have a bunch of undifferentiated cells o from outside to inside  sepals, petals, stamens, carpels  What are organ identity genes, what do they control, and how do they do it? o MAD­BOX controls what cells become what organs o depends on where the cells are located, producing transcription factors o control if the cells will turn into sepals, petals, stamens, or carpels  (depends on certain genes being turned on or off) o regulatory proteins are activators or repressors  What is the ABC hypothesis? o A=sepals o A+B=petals o B+C=stamens o C=carpels o Loss of A=no sepals or petals o Loss of B=no petals or stamens o Loss of C=no stamens or carpels  Animals tend to respond to stimuli by moving which way? o Move toward positive stimuli and away from negative stimuli  How do plants respond to environmental cues? o Since they are stationary, they have to adjust their individual patterns of  growth and development  What do signal transduction pathways do? o They link signal reception to response, how you get from stimulus to  response  See the light­induced greening of dark­grown potatoes on side 72 o  Explain the potatoes. o In the greening of potatoes, the light signal is detected by the  photochromic receptor o After the stimulus has been detected, transduction is initiated by second  messengers o sunlight is the stimulus  What are second messengers and what do they do? o Small molecules and ions in the cell that amplify the signal and transfer it  from the receptor to other proteins that carry out the response o Regulate one or more cellular activities o open up calcium ion channels and calcium increases in the cytoplasm o control production of cyclic GMP (control done by cyclic AMP) o amplification occurs in two ways with two different types of messengers o cyclic GMP and calcium ions  What are protein kinases? o Enzyme that catalyzes the phosphorylation or transfer of a phosphate  group from ATP to an amino acid in a protein o phosphorylate things  What happens to initiation the greening response in potatoes? o Post­translational modification of existing proteins o Transcriptional regulation  What is post­translational modification of existing proteins and when did it  actually happen? o in cytoplasm  What is transcriptional regulation and where is it happening? o transcription occurs in nucleus, translation in cytoplasm o kinases must migrate into nucleus o attach to DNA  What are the greening response proteins and what do you think they’re doing? o  What types of proteins are either activated by phosphorylation or newly  transcribed during the de­etiolation process? (Page 839) o Many are enzymes that function in photosynthesis directly o Others are enzymes involved in supplying the chemical precursors  necessary for chlorophyll production o Others affect the levels of plant hormones that regulate growth  Levels of auxin and brassinosteroids (hormones that enhance stem  elongation) decrease following the activation of phytochrome  This decrease explains the slowing of stem elongation that  accompanies de­etiolation  What is a hormone? o  What is tropism? o response to a stimulus (positive or negative)  What is phototropism? o growth of a plant towards it’s light source  What is coleoptile? o Covering of the young shoot of the embryo of a grass seed  Tell me what you see in slide 97­100. o on dark side, cells are a lot bigger and get pushed (cell expansion) o tip removed­straight o opaque cap­straight o transparent cap­curved o tip exposed to light leads to curving of plant o has to do with apex  What does slide 102 have to do with the discovery of plant hormones? o With a permeable gelatin material between shoot and tip, the shoot curved o Some type of chemical travels from tip to the shoot o But when it was an impermeable mica material, it did not curve o When the agar cube is on the left, it causes the curve to go to the right and  vice versa o Chemical is migrating away from the light side over to the dark side  More chemical on right side, so cell expansion occurs there and it  curves towards left SECTIONS 36.3, 36.5, and FIGURE 36.2: Resource Acquisition and Transport in Vascular Plants Vocab:  Xylem sap: consists mainly of water and inorganic ions, although it can contain a number of  organic chemicals as well Transpiration: process by which water that is absorbed by plants, usually through the roots, is evaporated into the atmosphere from the plant surface, such as leaf pores Cohesion: the act of sticking together  Adhesion: the force of attraction between unlike molecules  Translocation: transport of soluble food material from one plant to another via the  phloem or xylem  Phloem Sap:  thought to play a role in sending informational signals throughout vascular  plants Key Concepts:  Adaptations for acquiring resources were key steps in the evolution of vascular  plants.  Transpiration drives the transport of water and minerals from roots to shoots via  the xylem.  Sugars are transported from sources to sinks via the phloem. Questions:  How do water and minerals get into the root cells in the first place? o stomata (gas exchange for photosynthesis) o through root system  Once in, how do water and minerals get into the xylem (which is in the center of  the root)? o water gets in through epidermis (into or around) and then cortex and then  endodermis o apoplastic or symplastic  How do water and minerals get to the endodermis (Slide 19)? o  What is the function of the endodermis? o surrounds vascular tissue in center o acts as a barrier/filter via plasma membrane  What is the Casparian strip? o  What happens along the symplastic route? o filtration of toxic materials o goes through cells themselves through interior via plasma membrane  What happens along the apoplastic route? o no filtration of toxic materials o goes through the cell walls that surround cells and goes around them  How do water and minerals enter the xylem? o  What is xylem sap? o water and minerals that are flowing through the xylem  What is transpiration? o evaporation of water through stomata into atmosphere  Is the xylem sap mainly pushed upward from the roots, or is it mainly pulled  upward? o  What is root pressure and how does root pressure develop? o  What is guttation and why does it happen? o  Why is root pressure alone not sufficient for getting xylem sap to the top of most  plants? o  In general, what is the cohesion­tension hypothesis? o  Why is this a “pulling” process? o  What is cohesion? o  How many protons does oxygen have (Slide 35)? o  How many protons does hydrogen have (Slide 35)? o  Where will the electrons between an oxygen and hydrogen mainly reside? o  How many magnets stick together? o  Do you see any similarity? o  What is transpiration? o  Where is the higher concentration of water (Slide 40)? o  Where is the lower concentration of water (Slide 41)? o  What do you think is going to happen (Slide 42)? o  What happens inside the leaf, as water is lost? o  How does loss of water vapor from the leaf translate into a pulling force for  upward movement of water through a plant? o  What is cohesion? o  What is adhesion? o  What is translocation? o  What are sieve tube elements, sieve tubes, and companion cells (Slide 55)?  What is phloem sap? o  What is the direction of translocation compared to the direction of water/mineral  transport? o  How does sucrose get from photosynthetic cells in the leaves to the phloem? o A mesophyll cell is a type of parenchyma cell  How does sucrose get from a sugar source to a sugar sink? o  What is bulk flow by positive pressure? o  What is happening during the loading of sugar (Slide 61)? o  Explain the uptake of water (Slide 62). o  What’s happening during the unloading of sugar (Slide 63)? o  How is water recycled (Slide 64)? o *** This is meant to be used as a study tool, I will post the filled out version the day before the test!!!


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Kyle Maynard Purdue

"When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the I made $280 on my first study guide!"

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.