New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Exam 2 Study Guide

Star Star Star Star Star
1 review
by: Kelly Wetmore

Exam 2 Study Guide Bio 242

Kelly Wetmore

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Study Guide on everything for Exam 2, taken from professor's lecture and textbook
Intro Human Physiology
Barbara Van Sciver
Study Guide
Study Guide, BIO 242 Exam 2, URI, exam, study
50 ?




Star Star Star Star Star
1 review
Star Star Star Star Star
"So much better than office hours. Needed something I could understand, and I got it. Will be turning back to StudySoup in the future"
Mina Mraz

Popular in Intro Human Physiology

Popular in Department

This 13 page Study Guide was uploaded by Kelly Wetmore on Monday March 7, 2016. The Study Guide belongs to Bio 242 at University of Rhode Island taught by Barbara Van Sciver in Winter 2016. Since its upload, it has received 49 views.

Similar to Bio 242 at URI


Reviews for Exam 2 Study Guide

Star Star Star Star Star

So much better than office hours. Needed something I could understand, and I got it. Will be turning back to StudySoup in the future

-Mina Mraz


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 03/07/16
THE CELL  RER o The synthesis of proteins that will be secreted from the cell or  incorporated into the plasma membrane, or are destined for another  organelle  SER o The site of synthesis of lipids, including triglycerides and steroids o A site for calcium ions o Specialized in certain cells  Attached (bound) ribsosomes o Located on the surface of the endoplasmic reticulum o Produce proteins that are transported out of the cell  Free ribosomes o Located in the cytoplasm o Produce proteins that are used by the cell  Golgi apparatus o Cis face­ associated with endoplasmic reticulum o Trans face­ associated with plasma membrane o Processes molecules synthesized in the endoplasmic reticulum and  prepares them for transport to their final location o Packages molecules into vesicles  Lysosomes o Degrate intracellular debris and extracellular debris that has been taken  into the cell  o Digestive enzymes  Peroxisomes o Oxidative enzymes o Membrane, enzyme core, lume o H2O2 ­­­­­­­­­­­­­­­­­­­­ H2O+ O2       Hydrogen peroxide ­­­­­­­­­­­­­­­­­­water and oxygen  Mitochondria o Outer and inner membranes, matrix, cristae o Has there own DNA o “Powerhouses” because of ATP produced  Exocytosis o Ribosome deposits protein in ER o Protein exits ER o Protein enters Golgi for processing o Protein exits Golgi o Protein exits cell  Endocytosis­ movement inside the cell o Pinocytosis­ Process of bringing small amounts of fluid in the cell­ “cell  drinking” o Phagocytosis­ these cells bring in solids and debris to destroy­ “cell  eating” Cytoskeleton  Meshwork throughout cytosol  Anchors organelles  Microtubules o Hollow o Protein­ tubulin o Largest tubule o Functions include:  Maintains shape by resisting pushing  Cell division  Moves cell o Microtubule track ——­> vesicle (within axon)  Actin Filaments (microfilaments) o Protein­ actin o Double helix o Smallest tubule  o Functions include moving organelles  Intermediate filaments o Protein­ keratin o Wound into thick cables o Functions include  Anchors the nucleus  Resists tension  CAMS Cell Membrane ­ Cytosol (ICF) ­ Plasma membrane • Hydrophilic phosphate head • Hydrophobic fatty acid tails ­ Extracellular fluid (ECF) ­ Concentration gradient between ICF and ECF ­ Membrane proteins • Many different membrane proteins • Help function the cell ­ Channels • Allows small polar molecules to go down concentration gradient • Specific channels­ allow only certain things to pass through (ex: calcium channels) • Regulated channels­ open and close ­ Carriers  • Means of transporting large polar molecules through concentration gradient • Specific carriers­ depends on shape ­ Passive transport • Does not require ATP • Ex: Facilitated diffusion­ with aid ­ Active transport • Does require ATP ­ Enzymes • Biological catalyst • Chemical messengers ­ Hormones • Speeds up reactions ­ Anchors • Cytoskeleton to membrane  ­ Cell Adhesion molecules • Forms tissues • Attach cells together ­ Surface markers • Found on outer surface • Allows cells to recognize “like” cells • Forms tissues ­ Receptors Membrane Carbohydrates ­ Are attached to protein or lipid as glycoprotein or glycolipid ­ Membrane sugars seem to be involved in identification and recognition   Ampipathic molecule o Molecule with both a polar and non polar region  Phospholipids o Amphipathic molecules that align themselves in the membrane in a  bimolecular layer such that their hydrophilic region is oriented toward the  aqueous border (either extracellular fluid or the cytosol, or the  intraorganelle fluid or cytosol), and their nonpolar fatty acid chains are  oriented toward the middle of the membrane Membrane Transport  Solubility o ECF and ICF o Water and ions move through channels o Glucose and amino acids move by carrier proteins o Polar o Nonpolar­ can permeate the plasma membrane and will simply move  across the membrane by diffusion  Size o Small polar molecules can get through protein channels o Large polar molecules require a carrier 2 Post Receptor Binding Events 1) Channel regulation • Chemical messenger opens or closes channel • Change in activity of the cell 2) Activation of second messenger systems • Binding of chemical messenger to receptor • Activates adenylate cyclase • Adenylate cyclase catalyses the conversion of ATP ­­­­ cAMP • Cyclic AMP actives protein kinase A (cAMP­dependent) • Adds phosphate group to specific protein • Altered protein shape and function brings about cellular response • Connective Tissue ­ Binds, anchors, supports other tissues ­ Extensive amount of extracellular matrix (ECM)­ widely scattered cells  embedded in a mass of non­cellular material that contain a dense meshwork of  proteins and other • Collagen­ strength in tissues • Elastin­gives the tissue the ability to stretch and recoil ­ Bones, blood, tendons, cartilage, adipose tissue Intercellular Junctions  ­ Desmosomes • Attach cells together • Adhering junction  • Things can get between • EX: Heart cells ­ Gap Junctions • Create gaps that connect animal cells  • Create tunnels (connexons) ­ Tight Junctions • Impermeable junction Intercellular Chemical Messengers ­ Paracrine • Chemical messenger that communicates with cells by simple diffusion • Binds to receptor • Secretory ———> target cell • Can only act upon nearby cells • EX: Histamine­ causes blood vessels to dilate • Short distance signals ­ Neurotransmitters • Chemical messenger that is released from the axon terminal of a neuron • Pre­ and post­ synaptic neuron • Electricity ­ Hormones • Chemical messenger release from endocrine cells or glands into the interstitial fluid  to then diffuse into the blood and travel to target cells • Released into blood • Secretory cells find target cells ­ Neurohormones • Chemical messenger release from neurosecretory cells into the interstitial fluid and  then is diffused into the blood to travel to target cells  Osmosis­ passive movement of water molecules across a membrane, down it’s  concentration gradient   Diffusion­ passive movement of molecules from one location to another due to  their thermal motion  Fick’s laws of diffusion­ when a substance crosses a membrane, the net flux is  proportional to the size of the concentration gradient  Concentration gradient­ difference in the concentration of a substance between  regions  Electrical gradient­ difference in electrical charge of a substance between regions  Electrochemical gradient­ sum of electrical and chemical gradients acting on an  ion or charged molecule  Active transport o Requires energy o Carried out proteins called pumps  Passive transport o Does not require energy o Includes simple diffusion and forms of mediated transport  Carrier mediated transport o Movement of substances across the plasma membrane by protein carrier  molecules (integral membrane protein) ­­used when molecule cannot cross membrane or crosses very slowly ­­protein carrier molecules are embedded in lipid, and have site which  specifically binds the molecules ­­binding of the molecule to the site promotes a conformational change in  protein carrier, resulting in transport of molecule across membrane.  Channel is never formed o  Facilitated diffusion­  Downhill  Higher concentration ­­­­ lower concentration  With aid o Specificity­ transporters can only bind to one molecule or family of  closely­related molecules o Saturation­ rate of transport depends on substrate concentration and  number of carriers o Competition­ if a transporter bind several related molecules, those  molecules will compete for binding to the transporter Na+/K+ Pump­ Active Transport ­ Pumps sodium and potassium ­ Sodium is being pumped uphill ­ Dephosphorylated ­ Potassium is released ­ 3 Na+ for every 2 K+ ­ Pump requires energy ­ Against the concentration gradient = Uphill pump  Electrical properties of the plasma membrane o Anions are negative and non­diffusible in ICF (can’t get out of cell) o Actions of the sodium/ potassium pump  More permeable to potassium than sodium  It requires energy to move potassium into the cell but doesn’t  require energy to get out  Pump’s concentration gradient favors potassium’s movement into  the cell Membrane Channels ­ Leaky • Always open • Not regulated ­ Ligand • Chemical messenger gated • Channels open only when it receives a receptor ­ Voltage gated • Depends on the voltage of the channel (open or closed depending)  Excitable tissues­ tissues such as neurons or muscles that are capable of producing action potentials   Polarization­ Resting state of the cell  Depolarization­ Change to positive potential of cell o Caused by opening of Na+ channels and movement of Na+ into the cell  Repolarization­ Return of the membrane to resting membrane potential o Caused by Na+ channels closing o K+ channels open and K+ move out the cell  Hyperpolarization­ Change to a negative potential of a cell o Caused by K+ channels slowly closing o ­80mV­ below resting membrane potential Graded Potentials  Short distance signals (die out very quickly)  Decremental (keeps getting stronger)  Strength is proportional to stimulus strength Action Potentials  Long distance signals (released at axon terminal)  Non­decremental  Strength is not proportional to stimulus  Resting membrane potential o – 70mV­ no potential energy o Polarization  Threshold o Voltage for a typical cell is ­55mV o Voltage at which many sodium gates open o Sodium gates are closed if lower than ­55mV (ex: ­70mV)  Rising phase o Due to sodium influx o Sodium (Na+) gates are open and sodium is going into the cell o Depolarization  At peak o Voltage reaches +30mV o Potassium (K+) gates are open and potassium goes out of the cell (positive charge) o More potassium can leak out at rest  Falling phase o Due to potassium deflux o Voltage gates open for potassium to get back down to resting membrane  potential (­70mV) o Repolarization  Discuss the movements of ions during resting membrane potentials and action  potentials, including if they require energy or not.  Myelin o Lipid (non polar) o Material that surrounds many of the axons in our body o A good insulator o PNS­ Swhwann cells o CNS­ Oligodendrocytes  Formation and origin of myelin sheaths o Nodes of Ranvier­ gaps within the myelin along the axon o Myelin increases the speed of impulses in the axon  Saltatory conduction o Action potential conduction occurring in myelinated axons o The “jumping” of impuses from node to node  Multiple sclerosis. o Auto­immune disease that attacks myelin of oligdodendrocytes and leaves  scarring o Scarring slows down or blocks an action potential along it’s pathway o Symptoms include blurred vision, difficulty balancing and muscle  weakness  Axonal regeneration in the PNS o CNS neurons cannot reproduce o Schwann cells can reproduce o Regeneration tube guides the slowly growing axon  One way propagation of current o Na+ voltage gates have 3 confirmations 1) Open 2) Closed­ can be opened with stimulation 3) Closed­ can’t be opened EVENTS AT THE SYNAPSE:  Synapses­ dendrites (from cell body) receive input from other neurons at  specialized junctions  Pre­synaptic neurons­ the cell that releases the neurotransmitter  Post­synaptic neurons­ the target cell (which can be another neuron, gland cell, or  a muscle cell)  Events at a synapse 1) Action potential arrives at the axon terminal of the pre­synaptic neuron 2) Voltage calcium gates open because of action potential 3) Calcium diffuses in 4) Exocytosis of neurotransmitters 5) Neurotransmitters bind to post­synaptic receptors on neuron 6) Channel Regulation 1) Increase in permeability to sodium a. Diffuses in, depolarizes b. Creates EPSP c. Brings membrane closer to threshold 2) Increase in permeability to potassium  a. Potassium diffuses out b. Hyperpolarization c. More positives are leaving (below ­70mB) d. Creates IPSP 3) Increase in permeability to chloride a. Hyperpolarization b. Chloride diffuses in c. IPSP  EPSP o Excitatory postsynaptic potential o Graded potential where depolarization increase as more neurotransmitters  bind to more receptors o Increase in Na+ permeability  IPSP o Inhibitory postsynaptic potential  o Graded potential where hyperpolarization occurs due to K+ channels  opening when neurotransmitters bind to receptors o Increase in K+ permeability o Increase in Cl­ permeability  EPSP and IPSP cancelling out o Occurring at the same time o Two different inputs o No change in membrane potential  GPSP  o Grand postsynaptic potential o Sum of all the EPSP and IPSP occurring at the same time on the  postsynaptic neuron   Spatial summation­ addition of graded potentials generated at different locations  when stimulated around the same time   Temporal summation­ addition of graded potentials generated at a specific site  when stimulated at high frequency (several occurring in a row)  Convergence  o Many presynaptic neurons converge onto a single postsynaptic neuron  Divergence o One neuron branches out to effect others NS:  Peripheral nervous system o Consists of neurons that provide communication between the CNS and  organs throughout the body o Afferent  Transmits sensory and visceral information  Somatic senses (skin, muscles, joints) and special senses (vision,  hearing, equilibrium, smell and taste) o Efferent  Effectors of somatic nervous system  Skeletal muscle  Effectors of autonomic nervous system  Sympathetic­ cardiac muscle, smooth muscle, glands  Parasympathetic­ enteric nervous system, gastro­intestinal  tract Autonomic nervous system  Parasympathetic vs. Sympathetic systems including:  Rest and digest­ parasympathetic o Both stimulates the digestive organs (enhancing the digestion and  absorption of nutrients) and inhibits the cardiovascular system (decreasing heart rate)  Fight or flight response­ sympathetic   o Prepares the body to cope with threatening situations o The rate and force of the heart’s contractions increase, blood flow shifts  from gastrointestinal organs to skeletal and cardiac muscles, and energy  stores are mobilized  tonic activity  Dual innervation­ Autonomic NS innervates most organs  Exceptions to dual innervations o Innervated by sympathetic fibers o Adrenal medulla o Sweat glands o Arrector pilli muscles o Most blood vessels  Sympathetic system: o Thoracolumbar division o Preganglionic neurons have short axons that originate in the lateral horn o Several postganglionic neurons have long axons that travel to the effector  organ o Sympathetic chains and collateral ganglia (celiac division) o Innervates endocrine tissue (adrenal medulla), stomach, liver, spleen,  small intestine, upper part of large intestine, kidneys, urinary bladder, and  reproductive organs  Parasympathetic system: o Craniosacral division o Preganglionic neurons are long and terminate in the ganglia  Originate from cranial nerve  Originate in spinal cord o Postganglionic neurons are short and travel to the effector organ o Cranial nerves innervate lungs, heart, stomach, small intestines, liver,  sooth muscles of the eye, smooth muscle and glands of throat, and viscera  of thorax and abdomen, etc. o Pelvic nerves innervate the colon, bladder and reproductive organs  Cholinergic receptors­ Acetylcholine o Nicotinic  Ionotropic  2 binding sites for acetylcholine  Binding of acetylcholine triggers the opening of channels that  allow both sodium and potassium to move through causing an  EPSP in the postsynaptic cell o Muscarinic  Metabotropic receptors that operate through the action of a G  protein  Acetylcholine binding causes opening and closing of ion channels  and activation of enzymes  Dominant cholinergic receptor type in CNS   Andrenergic receptors­ neurons that release norepinephrine (from sympathetic  postganglionic neurons)  Adrenal glands and sympathetic innervations o Preganglionic neuron innervates tissue o Medulla consists of modified sympathetic postganglionic cells  (chromaffin cells) that developed into endocrine cells instead of neurons o Output­ 80% catecholamine, 20% norepinephrine, and very little  dopamine o Releases hormones into the bloodstream and contributes widespread  effects on sympathetic activation


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Allison Fischer University of Alabama

"I signed up to be an Elite Notetaker with 2 of my sorority sisters this semester. We just posted our notes weekly and were each making over $600 per month. I LOVE StudySoup!"

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.