New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Exam 2 Complete Study Guide

Star Star Star Star Star
1 review
by: Julia_K

Exam 2 Complete Study Guide PSYCH-UA 10 - 001

Marketplace > New York University > Psychlogy > PSYCH-UA 10 - 001 > Exam 2 Complete Study Guide

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

1. Computations (for One and Two sample group tests) 2. APA Format write ups 3. Reading SPSS Output/Levene’s Test 4. Power (and computations) 5. Relationships between Delta, Effect Size, Alpha,...
Statistics for the Behavioral Sciences
Elizabeth A. Bauer
Study Guide
Statistics Math
50 ?




Star Star Star Star Star
1 review
Star Star Star Star Star
"Killer notes! I'm stoked I can finally just pay attention in class!!!"
Ms. Bonita Halvorson

Popular in Statistics for the Behavioral Sciences

Popular in Psychlogy

This 7 page Study Guide was uploaded by Julia_K on Wednesday March 16, 2016. The Study Guide belongs to PSYCH-UA 10 - 001 at New York University taught by Elizabeth A. Bauer in Spring 2016. Since its upload, it has received 248 views. For similar materials see Statistics for the Behavioral Sciences in Psychlogy at New York University.


Reviews for Exam 2 Complete Study Guide

Star Star Star Star Star

Killer notes! I'm stoked I can finally just pay attention in class!!!

-Ms. Bonita Halvorson


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 03/16/16
Statistics for the Behavioral Sciences EXAM 2 REVIEW Material Covered: 1. Computations (for One and Two sample group tests) 2. APA Format write ups 3. Reading SPSS Output/Levene’s Test 4. Power (and computations) 5. Relationships between Delta, Effect Size, Alpha, Beta, and  Power 6. Hypotheses/Type 1 and 2 Errors 7. Significance Interpretation  HYPOTHESIS TESTING: Alpha: the amount of error we’re willing to make. It is a specific p­value (usually 0.05 or 0.01)  that we compare to the actual p­value that we find on the table. Later, this helps us determine  significance of our results. The Null Hypothesis (H0)  When we assume that the population mean (mu) is equal to the sample mean (mu0).  This is the given; this is the hypothesis that the researcher often hopes to disprove. The Alternative/Research Hypothesis (Ha)  The population mean (mu) is different from our sample mean (mu0).  This is the hypothesis we’re usually interested in – the one we hope yields  significant/reliable results because it discovers a new finding. Determining Errors:  In real life scenarios, Type 2 errors are more dangerous to make because it’s worse to say “Oh,  there’s no significance here” when there really was something significant. What we SHOULD HAVE done (reality) What we CHOSE to do  Fail to Reject Reject the Null (below )  Fail to Reject Null Correct Conclusion Type 2 Error Reject Null Type 1 Error Correct Conclusion   ONE GROUP T TEST (COMPUTATION) A researcher compares a population of college students with a test score mean of 40 to a sample  of 9 NYU college students with a mean of 44 and a sample standard deviation (s) of 5. Is this  difference significant in a one sample test with alpha = .05, two­tailed?  1. Hypotheses: Null: mu = 40 The test score mean of the sample students is the same as the mean of the general  population.  Alternative: mu ≠ 40 The test score mean of the sample students is not the same as the mean of the general  population.  2. Calculating STANDARD ERROR: (This will come in handy towards the end of the problem) We are given the sample standard deviation, so plug that into the formula. We get 1.667. 3. Decide on the appropriate test: z or t? If our sample size > 40, we use a z­test. If our sample size < 40, we use a t­test. ­In this example, our sample size is < 40, so we use the t­test formula. ­After using this formula, we get a t­calculated score of 2.40.  ­To find t­critical, we match up alpha (0.05) with the df (8) on table A.2.  From the table, our t­critical is 2.306. Note: For one­sample tests, df is simply (N­1). 4. Compare t­calc with t­crit: If t­calc > t­crit, then we reject the null. If t­calc < t­crit then we fail to reject the null. Our t­calc (2.40) > t­crit (2.306), so we reject the null. Because we’re rejecting, we risk  making a Type 1 Error.  APA WRITE UP:   We reject the null hypothesis. The NYU college students scored on average higher         (M = 44, s = 5) than the general population (μ = 40); a one­sample t test with               alpha = 0.05 demonstrates that this difference is significant, t(8) = 2.40, p < .05, two­ tailed. 5. Confidence Interval for one sample t­test: (95%)   X t s crit X Formula (the same goes when working with z­critical values):  mu = 44 +/­ (2.306)(1.667) = 40.156 and 47.844 I am 95% confident that 40.156 and 47.844 contains the true population mean test score for the  NYU college students. Now we ask: does the null hypothesis (0) fall within this interval? No. So this affirms that we  reject the null hypothesis. TWO Group T­Tests (Computation): Example: A researcher is interested in whether or not listening to classical music while studying  affects a student’s performance on an exam. She creates 2 samples with 20 individuals in each,  where Group 1 has listens to classical music while studying and Group 2 listens to rock, and  compares the exam scores for each group.  Group 1 Group 2 M=91.0 M=89.0 SS=5.88 SS = 4.88 Standard dev = 4             Standard dev = 3   6. Hypotheses: Null: M1 – M2 = 0 There is no difference in exam performance for students who listen to both classical and  rock music. Alternative: M1 – M2 ≠ 0 There is a difference in exam performance for students who listen to both classical and  rock music. 7. Calculating VARIANCES and STANDARD ERROR: (This will come in handy towards the end of the problem) Variance: We are given SS (sum of squares) and N. In order to find variance, we do:  SS/df.  [Note: with 2 sample t­tests, df = (n1 + n2) – 2 ] So our variances for Groups 1 and 2 are 0.65 and 0.54, respectively. Standard Error: Plug these variances into the standard error formula to get 0.3450. 8. Decide on the appropriate test used to calculate t: Questions to ask: a. Are both sample sizes large? (each sample size must be > 100) Yes – use large sample test for independent means (use z test!) No – Go to Question # 2 b. Are the sample sizes equal? Yes – use pooled variances test for equal sample sizes No – Go to question #3 to check for Homogeneity of Variance [for there to be HoV, one  variance has to be no more than twice as big as the other variance.] c. Can the population variances be assumed equal? Yes – use pooled variances test No – use separate variances t­test NOTE: (mu1 – mu2) in the formulas will be replaced with 0 In this example, our sample sizes are small and equal  use pooled variances test for  equal sample sizes. ­After using this formula, we get a t­calculated score of 5.79. ­To find t­critical, we match up alpha (0.05) with the df (18) on table A.2.  From the table, our t­critical is 2.101. 9. Compare t­calc with t­crit: If t­calc > t­crit, then we reject the null. If t­calc < t­crit then we fail to reject the null. Our t­calc (5.79) > t­crit (2.101), so we reject the null. Because we’re rejecting, we risk  making a Type 1 Error.  APA WRITE UP:   Consistent with our predictions, the group that listened to classical music averaged higher in  exam scores (M = 91.0, SD = 4) than did the group listening to rock music (M = 89.0, SD = 3),  t(18) = 5.79, p < .05, two­tailed). 10. Confidence Interval for 2 sample t­test: (95%) mu1 – mu2 = (91 ­ 89) +/­ (2.101)(0.3450) = 1.2751 and 2.7248 I am 95% confident that 1.2751 and 2.7248 contains the population mean difference in exam  scores between those who listened to classical music and those who listened to rock music. Now we ask: does the null hypothesis (0) fall within this interval? No. So this affirms that we  reject the null hypothesis. READING SPSS OUTPUT: Sig. = p level. So if sig. < alpha, then we reject the null! Levene’s test: if sig. > alpha, we assume there’s homogeneity of variance. But if sig. < alpha, we don’t assume homogeneity of variance POWER: Beta: (B) the probability of making a Type 2 error from an Alternative Hypothesis Distribution  (which is the t­test distribution). Failing to reject when you should’ve rejected. Power: (1­Beta) the probability that we correctly rejected the null hypothesis, and correctly  found significant results. In other words, finding a difference when there really is a difference.  We want bigger power! (0.08 and higher is good power) Delta – the expected t­value. It is found on table A.4 using power and alpha. The first term depends on sample size and the second term is called effect size.  Effect size – a measure of overlap between two population distributions. The difference between  the 2 population means in terms of standard deviations [(mu1 – mu2) / standard dev.)]  Small effect size: 0.2  Medium: 0.5  Large: 0.8  Relationship Sum Up:  As beta decreases, then alpha increases, and power increases  If power increases, then Type II error decreases  As alpha increases, power increases (But…increasing alpha risks Type I error, so it’s  easier to increase sample size instead).  As sample size increases, power increases (statistical accuracy for rejecting the null)  When you have a small t and a large N, effect size is small. But as N decreases, effect  size increases (more room to overlap because there’s less room for variability).  As sample size increases, delta increases, and power increases.  Note: effect size and sample size affect power SEPARATELY. They don’t affect each  other in the process of affecting power. 3 different Computation problems (looking for n, for effect size, and for power): 1. A researcher wants to compare GPAs between students who check some form of social  media more than 20 times/day and students who check social media less than 20  times/day. If the researcher has already calculated the effect size (d) of 0.40, what n  would she need to attain a power of 0.75, if alpha = 0.05, two tailed? ­Two samples, so we will work with the 2 sample n formula. ­Power is 0.75 and alpha is 0.05, so go to table A.4 and use that to find delta. Delta should be  2.63. ­Plug delta and effect size into the formula to find n (n=87 participants). 2. If a researcher wants power to be 0.7 or more and n=10, what should the effect size be? ­Power is 0.7 and alpha is 0.05, so go to table A.4 and find delta (2.48). ­Plug in delta and n into effect size formula. So d = 1.109. 3. Solve for power when given the following: n1=12 n2=12 M1=6.2 M2=5.4 Variance1=13.4 variance2=15.1                  alpha = .01, 2­tailed ­We are not given effect size (d), so instead, use the g formula:  X 1 X 2 g  sp ­The g formula has a pooled standard deviation in the denominator. Since we are given variance, we plug it into the pooled variance formula to find the pooled variance, and then take the square  root to find the pooled standard deviation. ­Plug in the pooled standard deviation into g formula. Solve for g. (g=0.212) ­Use this g as your estimated d. Plug the g into the delta formula in place of d. Delta = 0.519. ­Go to table A.3. Align delta with alpha to find power. Power = 0.02 (extremely small)


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Jennifer McGill UCSF Med School

"Selling my MCAT study guides and notes has been a great source of side revenue while I'm in school. Some months I'm making over $500! Plus, it makes me happy knowing that I'm helping future med students with their MCAT."

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.