New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

CHEM 2750 Test 4 Study Guide (with assignment)

by: Tyler Ebeling

CHEM 2750 Test 4 Study Guide (with assignment) Chem 2750

Marketplace > East Carolina University > Chemistry > Chem 2750 > CHEM 2750 Test 4 Study Guide with assignment
Tyler Ebeling
GPA 4.0

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These notes cover most everything that's on the study guide, as well as some help with assignments.
Organic Chemistry I
Shouquan Huo
Study Guide
Chem, 2750, organic, Chemistry, test, study, guide, mechanism, Assigment, Huo, Shouquan
50 ?




Popular in Organic Chemistry I

Popular in Chemistry

This 10 page Study Guide was uploaded by Tyler Ebeling on Saturday March 19, 2016. The Study Guide belongs to Chem 2750 at East Carolina University taught by Shouquan Huo in Fall 2016. Since its upload, it has received 149 views. For similar materials see Organic Chemistry I in Chemistry at East Carolina University.

Similar to Chem 2750 at ECU


Reviews for CHEM 2750 Test 4 Study Guide (with assignment)


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 03/19/16
CHEM 2750 TEST 4 STUDY GUIDE Hückel’s Rule: An aromatic compound has 4n+2 π electrons. (This means that an aromatic compound ONLY has either 2, 6, 10, 14, 18….etc. π electrons.) Rules of Aromaticity: 1) The molecule must be cyclic 2) The molecule is planar 3) The molecule is fully conjugated 4) The molecule has 4n+2 π electrons (where n=0 or any positive whole number) If a molecule is ANTI-aromatic, then it will match all of the above criteria, but will have 4n electrons instead of 4n+2 electrons (the two examples above that aren’t aromatic are actually anti-aromatic). Here are some examples of aromatic compounds (you should memorize these): Be familiar with 1,2 and 1,4 addition products Know the difference between kinetic and thermodynamic reactions. Kinetic reactions have a lower activation energy and higher-energy end product, while thermodynamic reactions have a higher activation energy, but a lower energy final product. This explains why thermodynamic reactions occur when heat is added, because the heat provides enough energy to get over the activation energy “hump” of the thermodynamic reaction. Diels Alder Reaction: You need to know the reactants and products of a diels alder reaction. It’s not as complicated as it seems at first. Below is the most basic Diels-Alder reaction, followed by some more complicated examples. The reason this reaction occurs is because it forms new sigma bonds, which are more stable than pi bonds. Nucleophilicity vs Basicity: It’s important to understand the differences between these two, and to be able to rank the strength of certain nucleophiles. Also, it’s important to note that nucleophilicity can depend on what type of solvent a molecule is in. Protic polar solvent: This type of solvent has a hydrogen bonded to an oxygen or nitrogen. (The weakest bases are the best nucleophiles in a protic solvent) Aprotic polar solvent: This type of solvent does not have a hydrogen bonded to an oxygen or nitrogen. In an aprotic polar solvent, the best/strongest base is also the best/ strongest nucleophile. (Basicity and nucleophilicity are positively related) SN2 Reactions: An SN2 reaction is a very important reaction to know for this test. Below is the most basic SN2 reaction, where R represents any group. (Note how the product is INVERTED, relative to the reactant) ALSO, it’s important to understand that SN2 reactions are CONCERTED, meaning that the whole reaction occurs in one single step, the transition state shown below is just to help understand exactly what’s happening in the reaction. SN2 reactions are heavily influenced by what solvent they are in. They occur the fastest in Polar aprotic solvents (this doesn’t mean that they won’t occur in polar protic solvents, it’s just much slower.) Some examples of commonly used polar aprotic solvents are acetone, DMSO, and DMF. Also, please make note of the fact that SN2 reactions can only occur on primary (1º) or secondary (2º) alkyl halides; NOT tertiary (3º). This means that if you are asked a question about the rate of an SN2 reaction, primary will be the fastest, followed by secondary, and tertiary would be the slowest (so slow that the reaction likely wouldn’t happen). SN1 Reactions: SN1 reactions are similar to SN2 reactions in that they involve substituting one group for another, but different in the way that they occur (two separate steps), and which solvent they work best in. In an SN1 reaction, the leaving group (generally Br or Cl), leaves the molecule first. This results in the formation of a carbocation. Then, in the second step, the nucleophile attacks the carbocation, which completes the reaction. (Note how the Br leaving is the slow/rate limiting step) If you’re wondering how to tell whether an SN2 and an SN1 reaction will occur, it’s really quite simple: SN1 reactions can only occur on tertiary alkyl halides. So if you see a primary or secondary alkyl halide, you know that it’s gonna be either SN2 or E2, which we’ll cover shortly. Also, SN1 reactions occur best in Polar Protic Solvents. E1 Reactions: E1 reactions are stereoselective, and are different from SN1/SN2 reactions because they involve elimination rather than substitution. However, E1 reactions are similar to SN1 reactions in that they ONLY occur on tertiary alkyl halides, and that they involve two steps. The first step is basically exactly the same as an SN1 reaction: an alkyl halide (leaving group) dissociates, forming a carbocation. But the second step is where E1 and SN1 reactions differ; rather than a nucleophile attacking the carbocation, a base removes a hydrogen/proton from the ß (beta) carbon (the carbon adjacent to the carbocation). Once the proton is removed, the extra electrons are used to form a double bond between the ß carbon and the carbocation. Once again, it’s important to notice that E1 reactions can only occur on tertiary carbons, just like SN1 reactions. (Also note that the Br leaving is the slow/rate limiting step) The chart below would be good to memorize, as it helps you determine which reaction will occur Zaitsev’s Rule: This rule applies to elimination reactions, and says that “an elimination will occur so that the hydrogen being removed will be removed from the carbon with the LEAST amount of hydrogens. You can observe this below by looking at the E2 reaction. E2 Reactions: An E2 reaction is regioselective. It can occur on 3º, 2º, or 1º carbons, although it generally prefers 3º or 2º (1º generally only occurs when steric hindrance is involved. It’s a concerted reaction (1-step), just like SN2 reactions. However, unlike SN2’s it involves elimination of a proton. The products will look basically identical to E1 reaction products, the only difference being how it gets there. As you can see below, instead of the leaving group dissociating, a base (generally a strong one) “steals” a hydrogen, which causes those electrons to form a double bond, which “kicks” Br off of the molecule to exist as an anion. Substitution of alcohols with HX: All alcohols have the OH functional group, which doesn’t make a good leaving group. However, H2O is an excellent leaving group, so when an HX (X being any halide) acid reacts with an alcohol, it forms H2O as a leaving group and a substitution reaction takes place. For alcohols, both SN1 and SN2 reactions can occur, but it still depends on 1º, 2º, or 3º. Substitution of alcohols with PX3 and SOCl2: This is another substitution reaction. In this reaction, the products maintain the same configuration as the reactants. (Pyridine is often used as a solvent because it’s a poor nucleophile but a good base.) Getting Sulfonate Esters from Alcohols: The basic reaction is shown below. Mechanism Assignment: I’m not 100% sure about #4, because no one at the tutoring center knew how to do it so I just guessed based off of the book. Everything else should be pretty close though.


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Anthony Lee UC Santa Barbara

"I bought an awesome study guide, which helped me get an A in my Math 34B class this quarter!"

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.