New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Avalanche and Snow Dynamics

by: Tia Leffler

Avalanche and Snow Dynamics WILD 5460

Marketplace > Utah State University > Wildlife Studies > WILD 5460 > Avalanche and Snow Dynamics
Tia Leffler
Utah State University
GPA 3.67

Michael Jenkins

Almost Ready


These notes were just uploaded, and will be ready to view shortly.

Purchase these notes here, or revisit this page.

Either way, we'll remind you when they're ready :)

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Michael Jenkins
Study Guide
50 ?




Popular in Course

Popular in Wildlife Studies

This 7 page Study Guide was uploaded by Tia Leffler on Wednesday October 28, 2015. The Study Guide belongs to WILD 5460 at Utah State University taught by Michael Jenkins in Fall. Since its upload, it has received 35 views. For similar materials see /class/230463/wild-5460-utah-state-university in Wildlife Studies at Utah State University.


Reviews for Avalanche and Snow Dynamics


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 10/28/15
UNIT ITHE FIRE ENVIRONMENT Fire behavior which is the subject of this course can be defined as the manner in which fuels ignite ames develop and fire spreads and exhibits other phenomena Our analysis o what fire does recognizes the complexity of the variable factors that in uence it Whether you are concerned with the suppression of wildfires or you wish to use fire as a management tool a healthy respect for and a basic understanding of the natural forces or processes related to fire are required The safety and effectiveness of fire management operations usually are dependent on sound judgments made on what the fire can and will do Such judgments often are required of firefighters on the fireline as well as the fire overhead organization Decisions made based on those judgments frequently reflect success or failure in meeting management objectives reasonable or excessive costs of suppression low or high accident rates and reasonable or high losses to resources This unit is about the fire environment You will be introduced to the most important variables that affect fire behavior You will see how the interactions of fire with its environment must in uence our assessments of fire behavior This unit will also introduce you to mathematical fire models available to help us predict fire behavior Before starting the unit be sure you have carefully read the instructions to students on page 1 of your workbook On page 2 you will find the unit objectives on which you will be tested at the end of this unit Please study these obj ectives then when you have finished return to this text On page 3 figure 1 illustrates the three major components making up the fire environment The current state of each of the environmental componentsfuels topography and weather or airmassand their interactions with each other and with fire itself determine the characteristics and behavior of a fire at any given moment Changes in fire behavior in space and time occur in relation to changes in the environmental components Note the seven factors listed under fuels At the head of the list is moisture content One unit of this course will be devoted just to fuel moisture content Another unit will be devoted to fuel models which will help you to analyze the rest of the fuels factors and make some important estimations Under weather windspeed and direction are our most critical factors One unit has been devoted to winds and their effects on fire behavior A large part of this course concentrates on fire weather as this is the most variable and most difficult of the environmental components to predict Topography is the most constant of the three major components making up the fire environment The most important factor under topography is steepness of slope since changes in slope have very direct and profound effects on fire behavior One unit of the course will discuss topography and how to measure slope Firefighters soon realize that fires seldom behave exactly the same way from time to time or place to place This complexity of variable factors indeed offers a challenge to any fireman and to his ability to predict what a fire will do in the next 24 hours or after it has spread into new terrain Now let39s brie y note how each o the three major components can change and in uence fire behavior Please turn to page 4 Under Item A note these changes that take place in time and in space First topography With time no change Terrain is generally constant Regarding space changes can be considerable especially in mountainous terrain Next fuels With time fuel moisture changes on a shorttime basis Other changes occur due to man or nature With space very significant changes occur due to region and site characteristics Last weather With time temperature relative humidity and wind change almost continuously In space significant changes occur with terrain and general weather patterns Let39s go back to topography and point out just how it does affect the job of predicting fire behavior We will see in this course how topography directly modifies general weather patterns to produce local weather variations Because of these variations in weather topography indirectly causes variations in fuel loadings and in local fuel moisture conditions As a result topography strongly affects the direction and rate of spread of fire On page 5 we39ll look at how fuels change over time First of all changes occur due to seasonal variations Depending on time and the character of season we have differing proportions of dead to live fuels The amount of curing of annual growth varies and the moisture content in dead and live fuels changes In addition we must recognize other natural or manmade forces at work These are disease or insect infestations wind or ood damage drought or frost dam age the harvesting or manipulation of vegetation and prescribed fires or wildfires that have recently occurred Each of these can produce changes in fuel loading arrangement andor moisture content How about the in uence of weather on the fire environment Please do question 1 on page 5 of the workbook39 then return to the text Choices 1 and 3 are true Unfortunately the elements of weather are not easily forecasted Diurnal changes significant and have a profound effect on fire behavior Another force of nature which must be considered here is the fire itself and how it affects its own environment On page 6 we see how fire as a local heat source affects its environment First fire can directly modify local weather the extent depending upon fire size and intensity This is done in several ways Intense heat can modify or produce local winds in the vicinity of the fire It can also contribute to atmospheric instability cumulus cloud development and sometimes even precipitation And of course fire directly affects temperatures and moisture contents of adjacent fuels The effects of fire on its own environment will be discussed in more detail later Now let39s note in item B some natural processes or features related to wildfire that concern firefighters Under item B the first factor is combustion This is defined as the rapid oxidation of combustible materials that produces heat energy The second factor is ignition temperature This is the point to which a combustible material must be heated to produce selfsustaining combustion The third factor is fire intensity which is the rate of heat energy released during combustion The fourth factor is rate of spread This is the relative activity of fire in extending its horizontal dimensions Rate of spread is usually expressed in chains per hour of forward spread or chains per hour of perimeter increase As the course progresses you will see how we must analyze and tie all the many variables together to predict whether ignition of new fuels will occur what the fire intensity will be and how fast the fire will spread Our first concern should be Will new fuels ignite On page 7 under item C note these factors on which the ignition of vegetative fuels depends First size and shape of fuels second fuel moisture content39 third compactness or arrangement of fuels and fourth fuel temperature These are pretty much listed in order of importance but all interact to determine whether ignition will occur if a firebrand is introduced into a natural fuel bed Figure 2 illustrates rates of spread and their relationship to fire growth The dashed lines depict fire perim eters by time periods which in this example are lhour intervals The fire started at point X at 1400 hours or 200 p m We see that this fire is spreading primarily in one direction which is also the direction the wind is blowing This we call the head of the fire Spread is also occurring to the sides or anks and to the rear but at lesser rates We are most concerned with forward rate of spread or spread at the fire39s head as this is generally the most dangerous and difficult type of spread to control The fire has spread at a rate of 8 chains per hour over a 3hour period Note that the perimeter o the fire has also increased at a fixed rate39 that is 24 chains per hour At the end of the 2 hours the perimeter is 48 chains at 3 hours 72 chains and so on If all factors remain constant the fire will continue to grow at 8 chains per hour of forward spread and 24 chains per hour of perimeter increase How about area increase per hour During the first hour the fire burned 4 acres After 2 hours the area increased to 16 acres and after 3 hours the area is 37 acres From this we can see that there are no fixed rates of area increase per hour as long as the fire continues to spread freely in all directions Calculations of rate of spread then should be in terms of forward spread at the head sideways spread on the anks and fire perimeter increase Assuming that fuels are mostly continuous in the fire illustrated in figure 2 what are the primary factors that will affect rate of spread Well they normally are fine fuel moisture windspeed fuel loading steepness of slope and the occurrence of spotting In later units you will see the extent to which these factors affect rate of spread and how these inputs are used to calculate fire spread In figure 2 we diagrammed the perimeter and area relationship to rate of spread from a point source Page 8 figure 3 illustrates some variations in the elliptical or eggshaped patterns of fire spread depending on windspeeds As windspeeds increase the fire shapes elongate Note that these patterns are not drawn to scale and merely illustrate fire shapes The fire shapes in figure 3 can be used for planning purposes particularly on the initial attack of fires These shapes may not fit your fire situation as conditions in the field can cause variations in fire shapes These conditions are the following heterogenous fuel complexes that produce fingering barriers that stop or partially stop the spread the effect of slope that reduces or increases fire spread at the head or anks and spotting ahead of or downslope from a fire All of these serve to complicate the task of estimating where the fire perimeter will be after times number o hours Together with ignition and rate of spread fire intensity is a third feature of wildfires of great concern to firefighters Under item D note these factors that fire intensity is dependent upon Fuel loading compactness or arrangement of fuels moisture content of fuels and atmospheric instability These are important factors to rem ember and you will be expected to know them later The listing of these factors at this point in the course is intended prim arily to acquaint you with the variables that must be analyzed and considered when making fire behavior predictions Near the end of this unit we will pull together the most important fire environmental factors and show what inputs are required to make fire behavior calculations and predictions To better understand when and how ignition and combustion occur in a wildfire we need to discuss the physical processes involved The next part of this unit starting on page 9 will deal with heat transfer and how the various methods of heat transfer affect fire behavior First of all note that heat transfer refers to the physical processes by which heat energy moves to and through unburned fuel The three common methods of heat transfer should be listed under item E The first is conduction Conduction is the transfer of heat from one molecule of matter to another An example of this is fire smoldering through a solid piece of fuel Since wood is generally a poor conductor of heat conduction is the least important method of the three Next is convection This is the transfer of heat resulting from the motion of air or uid It is the natural buoyant rise of warm air over a heat source that induces an automatic circulation within an airmass Examples of forced convection are fire spreading from surface fuels to aerial fuels and columns of smoke rising high into the atmosphere Convection also includes direct ame contact a powerful heat transfer process especially in a head fire The third method is radiation Radiation is the transmission of heat energy by rays passing from a heat source to an absorbing material Examples are the heat received from the sun and the preheating of fuels ahead of a 10 aming front Radiation from glowing char or ames is very strong This is why firefighters often must shield exposed skin Radiation is the chief source of heat transfer in a backing fire Do the examples given for the three heat transfer methods suggest a relationship among ignition fire intensity and rate of spread Well they should because fire behavior is the result of and is affected by the method and the amount of heat energy transfer within the fire environment Please turn to page 10 We39ve illustrated the various heat transfer methods in figure 4 Branches above the fire are receiving heat by convection and radiation Tree trunks and shrubs are receiving heat by radiation from the fire Fuels on the ground are being preheated by conduction and radiation Preheating of fuels may be occurring by all of these methods at the same time depending on the arrangement or loading of the fuels We39ve stressed the importance of radiant heat transfer in the preheating of fuels and spread of the fire How much heat will be received by fuels ahead of the fire Well this depends on the fire intensity and the distance but how much Figure 5 states that radiant heat decreases inversely with the square of the distance from a point source For example if 100 heat units are received at 1 foot ahead of the source only 25 heat units will be received at 2 feet Ifwe double the distance from 2 to 4 feet the heat units received are reduced to onesixteenth that of the 1 foot level or 625 At 10 feet the heat units have been reduced to only one onehundredth of the radiated value at 1 foot You can see how rapidly radiant heat drops off with distance It should be emphasized that in fireline work a point source is rarely encountered Here the source is better described as a wall and radiant energy from it obeys somewhat more complicated physical laws In this course however we will deal only with the basic point source relationships On page ll see question 2 Mark your selection then return to the text The answer to question 2 is number 2 Radiant heat is decreased by 4 times If you have problems in understanding this process please go back and study figure 5 In continuing our discussion of radiant heat process see figure 6 We know that fire generally travels faster upslope than down We know that fire travels faster when there is wind And we know that a pile of wood burns hotter than scattered wood Why Well at least part of the answer is increased radiant heat from the fire to the adjacent fuels Fuels upslope or downwind from the flames are preheated at a faster rate39 thus fire spread is increased In these two situations increased preheating by convection can also increase rate of spread upslope or downwind In the third situation the higher fire intensity in concentrated fuels is definitely a function of radiant heat transfer On page 12 do question 3 Mark your choice or choices then return to the text The answer to question 3 is number 3 Convected heat can be angled by the wind to help increase preheating of fuels ahead of the fire Fuels upslope from a fire receive the same effect as we mentioned in our discussion of figure 6 There is a fourth method by which fire spreads that is of great concern to firefighters This is the mass transport of firebrands which can occur as a result of convection wind or gravity We call this spotting Small embers of burning material can be lifted in a convection column and be carried some distance ahead of a fire Wind in addition to strong convective currents can carry embers or firebrands considerable distances downwind from the fire Wind without convective lifting will result in shorter range spotting of firebrands Gravity also is responsible for spotting of firebrands but always down slope Usually the steeper the slope the greater the spotting problems from burning materials of various sizes rolling down slope In each of these cases we are dealing with new ignitions outside the fire perimeter and not the normal growth of the fire Now see page 13 It39s time for the first exercise This unit has used some fire terminology that you must learn if you are to understand the basic concepts of fire behavior You will see these and other terms used again and again in later units of the course Being able to describe exactly what a fire is doing is a first step toward understanding fire behavior Increase of your fire vocabulary is the purpose of the first exercise Remember that there is a glossary in the back of the student guide Please do this exercise now You should have checked your answers for exercise 1 on page 22 Remember the glossary of terms is available to you in the Student Guide when you wish to check a definition In the next part starting on page 14 we want to discuss a wildfire39s potential behavior Why do some fires remain small while others get large very rapidly What happens when a fire gets large in size and intensity How does fire interact with its environment Let39s first consider the extent of the fire39s environment For a very small fire the fire environment is limited to a few feet horizontally and vertically As a fire grows in size so does the extent of the environment affected In a large fire the fire environment may extend many miles horizontally and thousands of feet vertically High intensity wildfires whether large or small in size usually have considerable effect on the atmosphere vertically This is evidenced by their convection columns There are generally three factors that determine the extent of vertical development of a fire39s convection or smoke column These are the heat energy generated from the fire the instability of the lower atmosphere and the winds aloft Stable air andor strong winds tend to discourage vertical development of convection columns Figure 7 illustrates the vertical dimensions of a fire Low intensity fires will create weak indrafts at the fire39s edge that will feed a low weak smoke or convection column over the fire This we sometimes refer to as a two dimensional fire In contrast a high intensity fire will create much stronger indrafts that can help feed convection columns to many thousands of feet into the atmosphere This is sometimes called a threedimensional fire Figure 8 illustrates an open and a closed fire environment On the left side we see a fire burning through all levels of the vegetation and exposed to various winds and other weather elements It will be readily affected by any atmospheric changes and fire behavior can change drastically as a result of wind shifts etc On the right side the fire is burning under a forest canopy This is somewhat similar to a structural fire burning inside a building Conditions outside the building have relatively little effect on the fire inside Such fires usually remain low in intensity However once the fire breaks out o the building or out through the forest canopy fire intensity and spread can increase drastically as outside atmospheric conditions then influence the fire Remember that any wildfire is a heat source that can and will interact with its natural environment The size of that sphere of influence will depend on the size and intensity or heat energy output of the fire The physical location of the fire and the sheltering effect from surrounding terrain and vegetation is often a contributing factor to the potential behavior of that fire Let39s once again compare low intensity fires to high intensity fires See page 15 We can generalize by saying that with low intensity fires the environment mostly controls the fire The sphere of in uence is very small and the fire causes only slight modification of weather elements in the immediate proximity of the fire On the other hand high intensity fires can control the environment to a marked extent The sphere of influence becomes much greater and high intensity fires can significantly modify weather elements near and adjacent to the fire Now for a change of pace we39d like you to try answering question 4 This includes some statement that we have not thoroughly discussed Mark your choice or choices then return to the text We39ll discuss each item in question 4 The first statement is not true as grass fires in light fuel loadings can reach very high intensities or blowup conditions To do this rate of spread must be very high with large amounts of available fuels being consumed in short periods of time Statement 7 is true Smoke columns from high intensity fires have been measured at over 30000 feet Statement 3 is not necessarily true Watch out for that word quotalwaysquot as there usually are exceptions There are situations where ground fires may be burning deep into organic materials where heat intensities are very high but there is little in uence on the surrounding 13 environment The last statement is not true As we mentioned for the first statement a high rate of spread is necessary to produce high fire intensities in light fuels Where large quantities of fuel are available for combustion fire intensity can be high with low rates of spread but intensity does increase as rate of spread increases We hope that all of this discussion has impressed you as a firefighter with the need to know what a fire is doing and what it can do in the future Many times firefighters have been surprised by wind shifts and other weather changes which suddenly contribute to extreme fire behavior If you are to do your job safely and effectively it is essential that you be able to anticipate what your fire will do next There are four primary areas of concern to firefighters in predicting fire behavior Forward rate of spread of fires the future perimeter of the fires the fireline intensities or flame lengths and any unusual or extreme fire behavior such as crowning and spotting Note that we are now using the term quotfireline intensityquot rather than fire intensity It39s important that you understand that this is not the same as fire intensity Fire intensity is a somewhat general term referring to the entire heat release of a fire at a given time It is very difficult to measure or to relate overall fire intensity to fire control activities In contrast fireline intensity is a measurable and useful term that is related to ame length In turn ame length can be related to fire control jobs We will explain fireline intensity and its relationship to ame length a little later The job of predicting fire behavior is indeed a complex one How does one even start to analyze the many variables Well this course is intended to help you gain the basic knowledge required to assess fire behavior It will also brief you about systems available to make fire behavior calculations or estimations On page 16 we would like to introduce you to fire behavior prediction systems See figure 9 Before predictions can be made we must make some preliminary observations What is the fire doing and under what environmenta conditions How are fireline conditions expected to change with respect to weather fuels and terrain This information can be entered into tables graphs and hand held calculators or computers and with the help of math em atical fire models fire behavior output is obtained Using this output plus the firefighter39s own experience with this fire and with other fires enables the firefighter to make the best predictions or estimations Figure 10 delineates the process of using a fire behavior prediction system First we must assess the fire situation and determine the inputs essential to using the system There are four The fuel moisture content prim arily of fine fuels second physical descriptions of the fuels which can be categorized into fuel models third the steepness of slope measured in percent39 and finally wind speed and direction at points of calculations These values are processed by entry into fire behavior models which are now available for use in several forms Fire behavior outputs are received from the models and recorded as follows Rate of spread in chains per hour fireline intensity in BTUsfootsecond and ame length in feet Area and perimeter and probability of ignition can also be obtained from simple tables The last steps in figure 10 are to interpret those outputs for various points on the fire perimeter to estimate spotting and crowning potential and size and fire perimeter location at various times and finally to use these estimations to determine control force requirements for the fire A mathematical model can never account for all of the many variable factors that govern wildfire behavior In addition it is very difficult to exactly assess all these factors on a specific fire and to determine exact inputs for the model However we can do a reasonably good job and can expect model answers that give better judgment aids than ever before in this inexact science Personal experience interpretation and feedback are essential to the fire predictions modeling process On page 17 we want to take a closer look at the mathematical fire behavior prediction model The model processes fuel and environmental conditions to give expected fire behavior Methods of estimating the input values and interpreting the output values will be covered throughout the course In the final unit of this course Unit XlPredicting Fire Behavior you will go through the entire process of assigning input values using the model in the form of tables and graphs to obtain output values and interpreting these output values An entire unit will be devoted to each of the following basic input values Fuel bed description fuel moisture slope and wind speed These units will cover both the general information required for a firefighter to assess the fire situation and also the specific information that is required as input to the model In order to express the many interactions that occur during a forest fire in mathematical terms certain simplifying assumptions have been made Among these are the following The model describes fire behavior only at the leading edge of a 39free burning fire39 the fuels are assumed to be continuous uniform and in a single layer contiguous to the ground39 wind slope and fuel moisture content all are constant for the time period of the calculation39 the fire is not spreading by spotting or crowning39 and firewhirls and other fireinduced atmospheric disturbances are not occurring It is important that you understand the implications of these assumptions You know of course that fire does not occur in a continuous uniform and constant environment But predictions from the model can be used successfully in many situations The closer actual conditions are to the model assumptions the better the predictions will be This is why human judgment is always used along with the model Even though the model does not describe extreme fire behavior you will see in later units that it can predict the potential for spotting and crowning Now please do question 5 on page 17 then return to the text You should have selected all of the choices since all the statements apply Now please turn to page 18 Figure ll presents a diagram of fireline intensity to further clarify this term Fireline intensity is the heat released in 1 second by a footwide slice of the aming front This represents the heat that would impact a firefighter just ahead of the front Since it has a direct relationship to ame length it can be related to the kind of control actions and size of fireline that must be planned for on the fire The relationships between fireline intensity and ame length will be explained in more detail in latex units Flame length is also an output of the mathematical fire model It should not be confused with ame height Figure 12 illustrates how each measurement is taken Flames usually bend forward at the head of a fire depending on wind slope factors Researchers have determined that ame length is a better parameter for describing fire behavior than ame height As mentioned earlier fire behavior predictions are useful for planning fire control actions Such planning includes the location of firelines use of direct or indirect attack methods the type of control forces which will be effective and the standards for fireline construction Certainly good planning in each of these areas will make the suppression effort more safe and effective On page 19 the second exercise is on wildfire and its environment Please complete this exercise now then return to the text You should have checked your answers on page 22 These decisions and choices are representative of those that are made on most fires by knowledgeable and experienced fireman This unit has introduced you to the many factors that in uence the way a fire burns how a fire can interact with its environment and how fire behavior predictions can be made The remaining units of the course will take you into much more detail The diagram on page 20 is a training quotroad map to achieving the skills necessary to meet the performance objectives of this course Unit numbers refer to units of this course With patience and diligence you will meet those objectives Finally we would like to summarize this unit by using a page from a publication entitled The Fire Environment Concept Please read this summary on page 2139 then prepare yourself for the unit test that follows


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Allison Fischer University of Alabama

"I signed up to be an Elite Notetaker with 2 of my sorority sisters this semester. We just posted our notes weekly and were each making over $600 per month. I LOVE StudySoup!"

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.