New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Study Guide: Midterm III

by: Mitchell Jones

Study Guide: Midterm III AST 101 - M001

Marketplace > Syracuse University > Astronomy > AST 101 - M001 > Study Guide Midterm III
Mitchell Jones

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

This is a study guide for the third midterm
Our Corner of the Universe
C. Armendariz-Picon
Study Guide
AST 101, study guide 3, astronomy
50 ?




Popular in Our Corner of the Universe

Popular in Astronomy

This 11 page Study Guide was uploaded by Mitchell Jones on Thursday November 5, 2015. The Study Guide belongs to AST 101 - M001 at Syracuse University taught by C. Armendariz-Picon in Fall 2015. Since its upload, it has received 137 views. For similar materials see Our Corner of the Universe in Astronomy at Syracuse University.

Similar to AST 101 - M001 at Syracuse


Reviews for Study Guide: Midterm III


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 11/05/15
Force Gravity II Newton’s 2  law: F=ma Universal Law of Gravitation: F=(GMm)/d^2 Falling: ma=(GMm)/d^2   a=(GM)/d^2 Powers of 10: 10^n=10*n­times 10^(­n)=1/10^n 10^n*10^m=10^(n+m) 10^n/10^m=10^(n­m) (10^n)^m=10^(nm) 10^3=kilo—k 10^(­3)=milli—m  10^6=mega—M 10^(­6)=micro—µ 10^9=giga—G 10^(­9)=nano—n  10^12=tera—T  10^(­12)=pico—p  1 mile=1.6 km Parallax Stellar parallax: star appear to change position  Earth rotates around sun, so you see stars from different locations in orbit Parallax angle (p): measure of distance to nearby star Angle you have to adjust telescope between its greatest periods is 2p (6 months apart) Larger distance, less parallax Angles: 1 degree=60’ (arc minutes)  1’= 60” (arc seconds) Stellar Parallax and Distance: d(parsec)=1/p(arc sec) 1 parsec= 2*10^13 miles Solar System All planets orbit counterclockwise Elliptical orbits, but practically a circle Nearly all planets rotate counterclockwise, expect Venus Terrestrial Planets—Mercury, Venus, Earth, Mars Small in mass and size Made of rock and metal No rings, few moons Jovian Planets—Jupiter, Saturn, Uranus, Neptune Large mass and size Mostly H and He Rings and many moons Asteroids Small rocky bodies orbit sun Mostly found in asteroid belt between Mars and Jupiter Comets Small icy bodies Found in Kuiper Belt Pluto—does not fit characteristics, dwarf planet Terrestrial Planets Metal core, mantle, rocky crust Earth: Geological Activity Seismic waves caused by earthquakes help us determine internal structure Core is part liquid and hot Planets heated when formed Radioactive decay also heat up interior Cool down over time—smaller planets cool faster Hot interior main driver for geological activity Volcanoes and plate tectonics and earthquakes (p­waves) P­waves—longitudinal waves travel through core S­waves—stopped by core Volcanoes: Molten rock from earth’s interior reaches surface Release lava, water vapor, CO2, N—outgassing Atmosphere is a product of outgassing Plate Tectonics: Lithosphere divided in tectonic plates that float on mantle Convection causes tectonic plates to shift—creates mountains, valleys, seas Magnetic Field: Charged particles moving in molten, electrically charged metal core creates mag. Field Protects us from wind of charged particles coming from the sun Some get trapped close to poles—cause auroras Protects atmosphere from being stripped away Atmosphere: Protects from solar radiation Captures part of energy coming from sun and warms planet Visible light reaches earth, UV and X­rays are absorbed Greenhouse gases capture heat and warm planet Moon: No atmosphere No signs of present geo. Activity Too small—cooled too fast Density less than earth Probably resulted from big impact with a Mars­Earth sized object Craters: Impact mark left by asteroid/comet hitting surface Believed responsible for dinosaur extinction Geo. Activity erases craters on earth Shaping Planet’s Surface: Impact of craters Volcano eruptions Disruption of planet’s surface by tectonic plates Erosion by winds, water, ice Mercury: Smallest planet Similar to earth’s moon No atmosphere No volcanic activity but signs of pat geo activity—cooled fast Venus: Earth sized Rotates clockwise Thick atmosphere—strong greenhouse effect Day and night extremely hot Air pressure same as .5 miles below earth’s ocean Mars: About half size of earth Very thin atmosphere Temp below freezing (­58 degrees F) Most similar to earth   Evidence of water flows in past and present Jovian Planets Jupiter, Saturn, Uranus, Neptune Jupiter Structure: Under pressure of the material above it in its makeup (atmosphere down to core), H  changes phases as you get closer to core Under increasing high pressure H heats up Layers of Jupiter (from top to core): cloudy atmosphere, H gas, H liquid, metallic H, core Metallic H is liquid and conducts electrical charges Jupiter under Pressure: Like stacking pillows—adding more will increase height but will eventually condense  and increase density Jupiter’s Magnetic field: Strongest of planets in solar system Auroras can be seen at the poles Jupiter’s Atmosphere: At least 3 distinct layers Ammonia (yellowish), ammonium sulfate (red­orange), water vapor Gives Jupiter its color Jupiter Storms Fast rotation (9 hour days) cause winds that reach 250 mph Numerous storms can be seen on Jupiter Great red spot—storm twice size of earth, has lasted for centuries Jupiter moons: more than 60 Europa: large amount of iced water Signs of geological activity and tidal heating suggest huge oceans below surface Io: elliptical orbit causes continual changes in strength and direction of tidal force from  Jupiter Flex Io’s interior and cause tidal heating Saturn: Rings: small water ice particles Each particle orbits like moon Ring formation: Likely originate from small moons orbiting Saturn New particles released from collisions between moonlets and other objects Saturn’s gravitational force prevents moons from forming larger bodies Formation of Solar System Important clues: Patterns of Motion Circular planetary orbits on same plane Planets orbit sun in same direction Most planets rotate in same direction as orbit Tilts generally small 2 types of planets Terrestrial: rocky and metal surface Small and dense Jovian: large and less dense Mostly H and He Asteroids and comets Asteroids: small rocky bodies mostly found in asteroid belt Comets: small icy bodies found mostly in Kuiper belt and Oort’s Cloud Nebular theory: solar system formed from gravitational collapse of gas cloud Nebula: gas cloud produced from explosion from dead previous star Diffuse and cold cloud of gas (mainly H and He but some heavier elements) Star Dust: origins of Universe H and He only elements manufactured in early universe Heavier elements produced by previous generations of stars We are all star dust Collapse: Gravity causes cloud to collapse under own weight As it collapses: temp increases (energy conversion)—hottest at center, coldest at  boundary Rotate rate increases (angular momentum conservation) It flattened Sun and planets formed in this spinning disk Flattens because it’s easier than collapsing inward (ball on spinning plate example) Pressure very large at center—increase temp (H and He will fuse and form star) When planets form they follow motion of spinning disk Why Planets Form: Condensation Sun formed at center of cloud—increase temp ignites nuclear fusion Planets developed from planetary seeds formed by condensation Temp of disk determined materials able to condense and develop into planets  (highest temps needed to produce metals, then rocks, H  compounds, H and  He gas) Frost line Heavier H rich planets able to form beyond frost line Small, metal rich planets formed within frost line Explains terrestrial and Jovian planets Accretion Encounters between condensed seeds led to larger objects “accretion” Some of these planetesimals eventually grew into planets Clean up Radiation from sun and solar wind cleaned up remaining gas not bound to planets  in nebula Asteroid belt is made from leftovers of planetary formation within frost line Jupiter too large for planet to form there (too large gravitational force) Kuiper belt and Oort Cloud contain leftovers from beyond frost line


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Janice Dongeun University of Washington

"I used the money I made selling my notes & study guides to pay for spring break in Olympia, Washington...which was Sweet!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.