New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

EXAM III Study Guide PART 1

by: Trang Le

EXAM III Study Guide PART 1 Bsci105

Marketplace > University of Maryland > Biological Sciences > Bsci105 > EXAM III Study Guide PART 1
Trang Le
GPA 3.45

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Hello, This is Exam III's study guide part 1 with materials on Cellular respiration and Photosynthesis. The things we need for the exam is quite a lot, so I thought I should upload the guide in bi...
Intro to biological sciences
Dr. Alewall
Study Guide
50 ?




Popular in Intro to biological sciences

Popular in Biological Sciences

This 13 page Study Guide was uploaded by Trang Le on Tuesday November 10, 2015. The Study Guide belongs to Bsci105 at University of Maryland taught by Dr. Alewall in Summer 2015. Since its upload, it has received 160 views. For similar materials see Intro to biological sciences in Biological Sciences at University of Maryland.

Similar to Bsci105 at UMD

Popular in Biological Sciences


Reviews for EXAM III Study Guide PART 1


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 11/10/15
CELLULAR RESPIRATION  The energy stored in organic molecules of food ultimately comes from the sun.  Respiration breaks this down and generates ATP to fuel biochemical processes.  Fermentation: a catabolic process of partially degrading sugars or other organic  molecules in anaerobic (without oxygen) environment.   The most effective anabolic pathway is aerobic respiration (requires oxygen). Summary of this: (Organic compounds) + O  ­­­>2CO  + H 02+ Ene2gy. This process is exergonic.  Cellular respiration oxidizes  carbohydrates, producing CO , H O 2nd A2P.    Catabolic pathways yield energy from redox reactions: transfer of one or more e­ from  one reactant to another. Overall oxidation reaction of glucose in respiration: C  H  O 6+ 12 6 O 2­­­­>  6 CO  2 6 H O 2 Energy  An example to explain redox reaction: The reducing agent is oxidized  and the oxidizing agent is reduced. Oxidation=(partial) removal of electrons.  Reduction=(partial) acceptance of electrons. Because of the different electronegativities  of O2 and CO2, C partially loses electrons and O partially gains electrons in this  example.  Glucose is broken down in a series of steps, in which most includes transfer of e­. H+ are  not transfer directly to oxygen, but to an e­ acceptor first, a coenzyme called NAD+,  which functions as oxidizing agent during respiration. e­ loses very little potential energy  when being turned from glucose to NAD+.   NAD+   + 2 H ­­­>     NADH   + H+        (NAD picks up H Oxidized  +  Reduced ­­­>  Reduced     Oxidized (hydride ion)  FAD          +    2 H.     ­­­>  FADH2                      (FAD picks up 2H.)  Energy Stored in NADH and FADH  are Used to Pro2uce ATP in Stages. Each pair of  hydrogen atoms produces a maximum of 3 ATP/NADH, 2 ATP/FADH2.   Electron transport chain: consist mostly of proteins, built into inner membrane of  mitochondria in eukaryotic cells. e­ removed from glucose are shuttled by NADH to the  "top" (higher energy end), travelled to the "bottom", where oxygen captures these and  combine with H+ to form water. e­ go down through a series of redox reactions, and on  the way to oxygen release ATP ­> exergonic.     The stages of cellular respiration has three major steps (image below). Oxidative  Phosphorylaton produces ATP   Oxidative phosphorylaton: enzymes donate an inorganic phosphate to ADP.  Substrate level phosphorylaton: substrates donate an inorganic P to ADP.  Conversion of Glucose to Pyruvate in Glycolysis (exergonic): +  + C 6 O12 26   + 2 ADP + 2 P ­­­> 2C H O +i2NADH + 2H3+ 4 A3  + 2 H O      2   (Glucose)                                               (pyruvate)   (Glycolysis)  Upon entering mitochondria, pyruvate is converted to acetyl CoA. Pyruvate's carboxyl  group is removed and given off CO2. The remaining 2 carbon fragment is oxidized to  form acetate (CH COO). ­ 3 CO2 released; keto  group converted to carboxyl/NAD is reduced; acetyl group reacts with CoA to form  acetyl CoA.  The Citric acid cycle  Acetyl CoA + 3NAD+ + FAD + ADP + Pi ­­­> 2 CO2 + CoA + 3NADH + 3 H+ +  FADH2 + ATP (must double the number of molecules for each because one glucose  molecule requires two turns of the citric acid cycle).   Citric acid cycle: (1) Acetyl coA adds two­carbon acetyl group to oxaloacetate,  producing citrate. (2) Citrate is turned into its isomer, isocitrate, by removal of one water  molecule and add another. (3) Isocitrate is oxidized, reducing NAD+ to NADH, lose a  CO2 molecule. (4) Another CO2 is lost, and resulting compound is oxidized, reduce  NAD+ to NADH ­­­> Succinyl CoA. (5) CoA is displaced by a phosphate group that is  transferred to GDP and form GTP which is similar to ATP but can be used to make ATP.  (6) Succinate oxidation: 2 H are transferred to FAD+, forming FADH . (2) Succinate ­­>  Fumarate; addition of a water molecule. (8) Fumarate ­­> Malate. the substrate is  oxidized, forming NADH and regenerate oxaloacetate. <repeat cycle>  Catabolism of fats and proteins also  involves glycolysis and citric acid cycle.  In fermentation, NADH produced in glycolysis is re­oxidized by transferring electrons to  pyruvate (muscle) and/or Acetaldehyde, a product of pyruvate (produce ethanol).  Phosphofructokinase is a major regulator of cellular respiration: Energy flow in respiration and oxidative phosphorylation Glycolysis and the TCA cycle oxidize glucose producing  NADH, FADH2 and ATP (by substrate level phosphorylation) Electrons from NADH and FADH2 are transferred to electron transport chain  Protons are pumped across inner mitochondrial membrane as electrons move along  electron transport chain  At the end of the electron transport chain, electrons are transferred to O2, producing H2O The proton gradient generated is used to drive synthesis of ATP by ATP synthase  (chemiosmosis)  Pyruvate (Cytoplasm) ­ Acetyl­CoA (Mitchondrion) Conversion. Some reactions to  consider: Glucose + 2 NAD+ + 2 ADP + 2 Pi  2 Pyruvate + 2 NADH + 2 H+ + 2 ATP + 2 H2O <Glycolysis>; 2 Pyruvate + (2 ATP) + 2 NAD+  + 2 H2O  2 Ac­CoA + 2 CO2 + 2 NADH + 2 H+ + (2 ADP + 2Pi) <Acetyl CoA>; 2 Ac­CoA + 6 NAD+ + 2 ADP + 2 Pi  + 2 FAD + 2 H2O  4 CO2 + 2 CoA + 6 NADH + 6 H+ +  2 ATP + 2 FADH2 <Citric  acid cycle>.  How mitochondria  convert energy stored in NADH and FADH  to2ATP.  Oxidative Phosphorylation: Electron transport chain removes protons and electrons  from NADH, FADH ;   2  Electrons are used to reduce O 2to H2O;  Protons create electrochemical gradient across inner mitochondrial membrane;  Electrochemical gradient drives formation of ATP from ADP, Pi (chemiosmosis) by ATP synthase. PHOTOSYNTHESIS  The flow of energy and molecules in photosynthesis is in many ways are the opposite of what occurs in cellular respiration (eg energy source, energy flow, direction of proton movement).  Other aspects are similar (eg electron transport chain) Proteins involved in photosynthesis are found in membranes of thylakoid sacs The reactions that require light (light reactions) occur in two stages, located in Photosystem  II and Photosystem I.   Synthesis of carbohydrates (dark reactions) does not require light and occurs in the Calvin  cycle.  Autotrophs:  Can obtain organic molecules through photosynthesis without eating  other organisms.  Photoautotroph: organisms that use light as the source of energy to synthesize organic molecules (plants, algae).  Chloroplasts are found mainly in mesophyll, a tissue in the interior of leaves.   CO2 enters and leaves through pores called stomata.  In thykaloid membranes are chlorophyll, the green pigment that gives leaves their  green color.   Photosynthesis: 6CO  + 12H2O + Ligh2 energy  C H O  + 6O  +66H12.6CO is  2 2 2   reduced while water is oxidized to become oxygen.  Oxygen given off from plants come from water, not carbon dioxide. Plants split water molecules as source of e­ from H atoms, releasing oxygen as by­product.   Photosynthesis has 2 steps: light reaction and Calvin cycle.    Light reactions: convert solar energy into chemical energy. Drive e­ and H ions to an acceptor called NADP+ forming NADPH. Also use a process called  photophosphorylation, generating ATP using chemiosmosis. This occurs in  chloroplast.  Occur in the stroma, Calvin cycle begins with adding CO2 from air to organic  molecules in a process called carbon fixation. It then reduces the fixed carbon to form carbohydrate (Glyceraldehyde­3­P) by addition of e­. This requires energy from ATP, thus ATP is oxidized into ADP and Pi, and this goes back to Light reactions (figure  above).   Synthesis of carbohydrate  in stroma (NOT require light)  A photosystem: a reaction­center complex associated with Light­harvesting  complexes.   How a photosystem harvests light: A photon (molecule of solar energy) strikes a  pigment molecule in a light­harvesting complex, the energy is passed from molecule  to molecule until it reaches reaction­center complex. Here, an excited e­ from the  special pair of chlorophyll a molecules is transferred to the primary e­ acceptor.   Photosystem II (PS II) and photosystem I (PS I)   Energy of electrons excited in PS II make ATP; energy of electrons excited by PS I  make NADPH.  Light drives the synthesis of ATP and NADPH through linear electron flow:  Absorption of photon by pigment molecule in PSII excites electron in the molecule;  Energy (in the form of excited electrons) is passed along other pigment molecules to a  P680 dimer where it excites two electrons.  These electrons are passed to the primary  PSII acceptor, converting each P680 monomer to P680+; An enzyme splits water and two electrons pass to the P680+ dimer; Both excited  electrons move along electron transport chain to PSI, enabling ATP synthesis; Absorption of light excites 2 electrons in P700 dimer which pass to PSI primary acceptor, creating P700+.   These electrons pass along a second electron transport chain, enabling  reduction of NADP to NADPH;   P700 is regenerated by accepting electrons from the first electron transport chain.  Proton  Gradient Used  to Drive ATP Synthesis  (1) Water is split by PS II on the side of the membrane facing thykaloid space. (2)  Plastoquinone (Pq) transfers e­ to cytochrome complex, 4 protons are moved across  membrane into thykaloid space. (3) A H ion is removed from stroma when it's taken up  by NADP+. The diffusion of H+ from thykaloid space back to stroma along H+  concentration gradient powers ATP synthase. These reactions require light, and store  energy in ATP which move to Calvin cycle.


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Janice Dongeun University of Washington

"I used the money I made selling my notes & study guides to pay for spring break in Olympia, Washington...which was Sweet!"

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.