×

### Let's log you in.

or

Don't have a StudySoup account? Create one here!

×

### Create a StudySoup account

#### Be part of our community, it's free to join!

or

##### By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

## MAT119 M5WA5

by: tophomework Notetaker

37

0

7

# MAT119 M5WA5

Marketplace > MAT119 M5WA5
tophomework Notetaker
AU
GPA 3.8

### Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

×
Unlock Preview

### Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

## About this Document

MAT119 M5WA5
COURSE
PROF.
No professor available
TYPE
Study Guide
PAGES
7
WORDS
KARMA
50 ?

## Popular in Department

This 7 page Study Guide was uploaded by tophomework Notetaker on Sunday November 15, 2015. The Study Guide belongs to a course at a university taught by a professor in Fall. Since its upload, it has received 37 views.

×

## Reviews for MAT119 M5WA5

×

×

### What is Karma?

#### You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 11/15/15
Written Assignment 4 SECTION 5.1 Exercise 2 Find Interest  ­ \$35,000 at 6% for 9 months  \$35000.06 9 12  \$1575 I  Prt Using the formula      Interest  Pr  t Exercise 4  Find Interest  ­ \$1875 at 5.3% for 7 Months  I  Prt \$1875.053 7/2  \$57.97 Using the formula      Exercise 8    Find Interest  ­ \$8940 at 9%; loan made May 7 and due Sept. 19  \$8940.09 4 12  \$268.20 I  Prt Using the formula      Exercise 16 Find FV –  \$3475 Loan at 7.5% for 6 Months Future Value for Simple Interest  A  3475 1. 075 1 3475 10375   \$3605.31 A  P  I A  P  rt    2     Or         Exercise 18  Find FV –  \$24,500 Loan at 9.6% for 10 Months   10 A  24,500 1 096   24,500 108  \$26,460   12  Exercise 22 Find Present Value of \$48,000 for 8 Months money earn 5% Present Value for   future amount Simple Interest  \$48,000 \$48,000 A P    \$46,601.94 P  1 .5 8 1.033 1 rt  12 Exercise 26 A. Find the Price of the T­Bill  B. Find the actual Interest rate paid by the treasury 6 Month T­Bill \$18,000 with discount rate of 1.925% Future Value for Discount  Prt  \$18,0000.01925  6 173.25 Simple Interest  12 A  P  I Find the discount of the T­Bill by             PRICEofT BILLFaceValue Discount  \$18,000 \$13 7.25  \$17826.75 A. A  P  rt  173.25  1800 r .5   173.25 9000 r   Interest  Pr  t 173.25 9000 r  9000  9000 Interest  Prt .01925 1.925%  r B.     Exercise 30  \$725896.15 Late income Tax Due 34 Days  9.8% Interest  34 I  \$725,896.15.098  \$6626.54 365   The total interest paid is \$6626.54, plus the balance \$725,896.15 = \$732,522.69 Exercise 36  \$10,000 Loan       6.75%  Total Interest Paid \$618.75 Find the time period (t) Written Assignment 4 618.75 \$10,000 0.0675  t 618.75 675 t 618.75 675 t 675  675 .9167  11  t 12 SECTION 5.2 Exercise 8 Find compound amount  ­ \$1,000 at 6% compounded annually for 10 years A  P 1i  A 1000 1.06 10 \$1790.85   Exercise 10 Find compound amount  ­ \$15,000 at 4.6% compounded semi­annually for 11 years A  P 1i  A 15,000 1.046/ 2 22 \$24,737.47 Exercise 14 Find Interest Earned ­ \$22,000 at 5% compounded annually for 8 years n 8 A  P i  A  \$22,000 1 .05   \$32,504.02 I  \$32,504.02\$22,000 \$10,504.02 A  P  InterestEarned Exercise 18 Find Interest Earned ­ \$27,630.35 at 4.6% compounded quarterly for 3.9 years A  P 1i n A  \$27,630.35 1 .046 / 4 15. \$33,025.87   A  P  InterestEarned I  \$33,025.87 \$27,630.35 \$5,395.52 The variable n (15.6) was found by multiplying the (3.9) years by 4 since it is compounded quarterly. Exercise 22 Find the interest rate (with annual compounding)  \$9000 grows to \$17,118 in 16 years A  P i n Using the equation,  input known variables, and solve for the unknown.  \$17,118  \$9000 1 i 16 \$17,118 \$9000 1 i 6  9000 9000 1.902   i 16 161.902  16 i 6 161.902 1 11 i 161.902 1  i 1.0411  i .041 4.1%  i Written Assignment 4 Exercise 24 Find Face Value of 10 Year Bond at 4.1%; Price \$13,328 n 10 A  P i  A  \$13,328 1.041   \$19,919.22  \$19,919Bond Exercise 26  Find Face Value of 25 Year Bond at 4.4%; Price \$10,106 A  P i  A  \$10,106 1.044 25 \$29,654.58 \$29,655Bond Exercise 32 Find the APY corresponding to the given nominal rates  4.7% Compounded Semiannually Effective Rate (APY)  .047  2 2 m re 1  1 1235  1.525 52.5% r  1 r 1  2  e  m . Exercise 36 Exercise 36 Find the Present value of the given amount           \$8500 at 6% compounded annually for 9 years  Present Value  8500 8500 A P  9  \$5032.56 P  n .06  1.689 1 i Exercise 44 If money can be invested at 6% compounded annually, which is larger, \$10,000 now or \$15,0? Use Present Value to decide.  A 10,000  1.06 6   6 A 6 15,000 15,000 10,000 1.06   61.06   P  6  \$10,570.82 1.06  .06  1.419 14185.19  A The present value of the \$15,000 is approx. \$10,570.82 and the future value of the \$10,000 now is  approx. \$14,185. Therefore, the 15,000 in 6 years is larger than \$10,000 now. Exercise 46 A developer needs \$80,000 to buy land. He can borrow at 10% compounded quarterly.  How much will the interest amount to if he pays it off in 5 years. A  80,000 .1/ 4 2010,000 1.25 20  \$131,089.32 \$131,089.32 80,000 \$51,089.32 Interest Accumulated Exercise 52 Partner A contributes \$10,000 now, Partner B will match equal amount in 3 years. How much will Partner B contribute? (Assume 6% compounded semiannually) A  P i n A 10,000 1.06/ 2 610,000 1.3 6 \$11,940.52 Partner B will contribute approx. \$11,940.52 Future Value of Ordinary Annuity  1 i n1 S  R    i  Written Assignment 4 SECTION 5.3 Exercise 4 Find the future value of an Ord. Annuity  R = \$20,000; 4.5% interest compounded annually for 12 years  1 i n 1   1.045 12 1   .69588  S  R   S  20,000    20,000    20,000 15.464  \$309,280   i   .045   .045  Exercise 8   Find the future value of an Ord. Annuity R = \$20,000; 6% interest compounded quarterly for 12 years 48   1 .06 1  48   4    1.015  1 1.043   1 i  n1  S  20,000  .06   20,000   . 06 20,000  .06   20,000 17.391   \$347,820 S  R          i             Exercise 10 Find the Final amount in each retirement account  First split the problem into two parts.  \$5000 invested per month; 5% compounded Monthly for 20 years Then \$1000 per month; 8% compounded monthly for 20 years 120   .05   1 12  1    1.0042 120 1  0.654  S  5,000    5,000    5,000    5,000 10.9   \$54,500  .06   .06   .0 6     After 20 Years   .08  120   1  1   1.0067 120 1  S 1,000   12   1,000     1,000  1.23  1,000 15.375 \$15,375   .08   .08   .08        2 nd half of problem. Since the first part (\$54,500) continued to earn interest although payments stop, The total interest earned on the \$54,500 with 0% interest over 20 years is equal to Interest  Pr  t \$54,500.05  20 \$54,500 This amount is added to the previous balances for both parts. \$54,50015,375 54,500124,375 Is the balance of the retirement fund. Exercise 14   Find the amount of each PMT R = \$65,000; 6% compounded semiannually for 4 ½ years Written Assignment 4  .305  \$65,000  R    .06    .06  9  \$65,000  R 5.08     1  1  \$65,000  R   2   \$65,000 R 508   .06  5.08  5.08     \$12,795  R Exercise 20   Find the Interest Rate needed \$100,000; quarterly payments of \$1200 for 15 years 60   x   1 4 1  \$100,000 1,200     Future Value of Annuity Due   x  n1  4   1 i  1    S  R  i   R Using the graphing calculator, I got an approx. interest of 19%?   Exercise 26 Find the Future value of each annuity due .  Pmt \$1050 for 8 years at 3.5% compounded annually 9   1.035 1   .363 S 1050 10.37 1050  S 1050   1050 S 1050   1050  .035   .035  S 10888.51050 \$9838.5      Exercise 28 Find the Future value of each annuity due .  Pmt \$25000 for 12 years at 6% compounded annually 13  1.06  1  1.13 S  25000 18.83 25000  S  25000    25000 S  25000   25000  .06   .06  S  470750 25000 \$445,750      Exercise 34 Find the payment  \$12,000; pmts for 6 years; interest rate 5.1% 7 12,000  R 8.181     1.051 1    12,000  R    1  12,000  R 7.18     .051   R 7.18  1.051 1  7  12,000    12,000  R   R 12,000  R   .417  1  7.18 7.18  .051    .051   \$1671 R         Exercise 42 \$80 compounded monthly for 3 years 9 months (45 periods); 7.5% interest 45   075    1. 12  1   1.00625 1 45  1.324 1   .324   n  S  80  .075   80    80    80    80 51.4  \$4,14 S  R  1 i  1     .00625   .00625   .00625   i   12       Exercise 44 \$2435 compounded semiannually for 8 years (16 periods) 6% interest; leaves the  money alone with no additional deposits for another 5 years (10 periods) Written Assignment 4  16    1 .06 1  16 S  2435   2    2435   1.03  1  2435  .605   2435 20.17  \$49,114  .06   .03   .03     2      First solve the beginning balance  10 A  49114 1  .06   49114 1.03  10  49114 1.34  65,813   2  There will be \$49,114 after 8 years,  The total balance after the 13 years will be \$65,813 Present Value of Ordinary Annuity    1 1 i n  SECTION 5.4  P  R     i    Exercise 2 Find the PV of ordinary Annutiy  \$890 Pmt, 6% compounded annually for 16 years  16 P  890  1 1.6    890  1.394   P  890  .60  890 10.1  \$8989   .06   .06   .06     Exercise 8 Find the amount necessary to fund withdrawals \$1200, 5.6% compounded annually for 14 years 12  1 1.56    1.52   .4 P 1200   1200    P 1200   1200 8.57  \$,684   .056   .056   .056   Exercise 12 Find the payment made by the ordinary annuity w/ given PV   \$45,000, Monthly pmts for 11 years 5.3% compounded monthly 45000  132  R 45000 45000  R 1 1.53/12    1 1.044  132  R  .053     .44     .053   .053  45000 132  R 45000 45000  R  1 1.53/12   1.56  R 8.301       .053   .053  5421.03  R Exercise 16 Find the lump sum deposited today that will yield the same total as payments of \$10,000 at the  end of each year for 15 years of the given interest rates  4% Compounded  Annually First find the Future value of the lump sum, than find the present value that will match the sum of the future.   1 i n 1   1.04 15 1  1.8011 .801 S  R   S 10000   10000   10000     10000 20.025  \$200,250   i   .04   .04   .0     Future Value  n 15  1 1i    1 104    1.56   .4 S  R   i  S 10000   .04  10000  .04  10000   .04 10000 11    \$110,000         Present value that should be invested today is \$110,000.  Written Assignment 4 Exercise 20 Find price purchaser should be willing to pay, assume coupon rate is paid twice a year.   \$20,000 Bond coupon rate 4.5% matures in 8 years current Interest rate 5.9% I  20000.045  1 450 I  Prt 2      Interest paid every 6 months on the bond. 1 1.059/12 1  1 10295 16  .372  P  450    450   450    450 1.61  5,674.5  .059/ 2   .0295  .0295  Present Value of the Annuity. n 16 16 P  A i  P  20000 10295   20000 1.295   20000 .68  \$2,560      Present Value of Bond. Add the Present Value of Annuity and Present Value of the Bond to find what someone should pay for them right now.  \$5,674.50 \$12,560 \$18,234.50 Exercise 28 Find the payment to amortize these loans \$140,000; 12% compounded quarterly 15 quarterly payments Pi R  n 1 1i       Exercise 34 Find monthly house payment necessary to amortize the given loans      \$96,511 at 8.57% for 25 years  R  Pi R  96511 .857 /12   96511 .07   675.58  675.58  \$767.70 1 1i n 1 .0857 /12 2512 1 1007 300 1.123 .88 Exercise 40 Use the amort table. How much of the 10  payment is used to reduce the debt? The payment is 88.85, 2.61 towards the interest, and \$86.24 towards the Principal Exercise 50 Student borrow \$35,000 10 years with monthly payments 7.43% compounded  monthly  R  35000 .743/12   35000 .062   217  217  \$414.12 1 1.0743/12 120 1 10062 120 1 .76  .524

×

×

### BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.

×

### You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

## Why people love StudySoup

Jim McGreen Ohio University

#### "Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Kyle Maynard Purdue

#### "When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the material...plus I made \$280 on my first study guide!"

Jim McGreen Ohio University

Forbes

#### "Their 'Elite Notetakers' are making over \$1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!
×

### Refund Policy

#### STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

#### STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.