New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Study Guide Rotational Motion

by: Wilson

Study Guide Rotational Motion PHYS 111

Marketplace > Indiana University of Pennsylvania > Physics 2 > PHYS 111 > Study Guide Rotational Motion
GPA 3.8

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

The study guide on rotational motion - enjoy!
Physics I Lecture
Dr. Haija
Study Guide
50 ?




Popular in Physics I Lecture

Popular in Physics 2

This 3 page Study Guide was uploaded by Wilson on Sunday November 15, 2015. The Study Guide belongs to PHYS 111 at Indiana University of Pennsylvania taught by Dr. Haija in Summer 2015. Since its upload, it has received 53 views. For similar materials see Physics I Lecture in Physics 2 at Indiana University of Pennsylvania.


Reviews for Study Guide Rotational Motion


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 11/15/15
θ2 UNIT 9  P2 ∆θ ROTATIONAL MOTION  9.1 INTRODUCTION:  Translational motion of an object was discussed in Units. 3­4, and  circular motion, uniform and non uniform, was discussed in Ch. 5. In this chapter rotational motion of a point or extended object will be introduced. A force acting on an extended object creates a torque that rotates it about a fixed axis. A solid object of finite physical size is known as a rigid body. Thv2axis of rotation could be about the center of mass of the rigid body or about other points where it is pivoted. This chapter will mainly be about the kinematics of a rigid body. Discussion of the dynamics of a rigid body will be the topic of the following chapter.  θ1 ω 9.2 ANGULAR KINEMATIC QUANTITIES: Consider a point like object moving in a circle of radius r (Fig 9.1). As the object moves from point P  at t  to point P  at t ,  it 1 1 2 2 y sweeps through an arc ∆s that subtends an angle at the center  ∆ θ = θ2 ­ 1 v1 in a time  interval ∆t2= 1  ­ t . From geometry r ∆s = r ∆ θ  r (9.1) where ∆ θ is an angular displacement, measured in radians. To O convert an angle expressed in degrees to radians, the following relation may be used: Fig. 9.1 θ   ( 2 π rad) θ rad 360 deg deg , (9.2a) and from radians to degrees, the conversion is θ   (360 ) θ deg  2 π rad (9.2b) v Dividing Eq. (9.1) by ∆t gives the average linear velocity  ; that is Δs Δθ    r    Δt Δt v  r ω or   ,  (9.3) ω For an object experiencing a constant linear acceleration, the average angular velocity   is given by ω   ω 1 2 ω 2 =  , (9.4) where ω  1nd ω  a 2 the instantaneous angular velocities of the object at points P  a1d P , 2espectively. Eq. (9.4) holds only if the change in the object's angular velocity is uniform. 9.3 ROTATIONAL MOTION IN A PLANE: Eq. (9.3) can be used to establish a connection between the instantaneous linear velocity and the angular velocity at any point on the circle as v = r ω. (9.5) The average tangential, or linear, acceleration of the object during its motion between points1P  and2P  is defined as v 2 v 1 t   t a 2 1 =  . (9.6) Use of Eq. (9.5) in Eq. (10.6) gives r(ω 2 ω 1 a (t2 t 1 =  or a α =  r (9.7) where ω 2  ω 1 α t2  t1 =   , (9.8a) is the average angular acceleration . If the angular acceleration is constant, then the above equation can be expressed as ω  ω 0 α t (9.8b) For a constant angular acceleration, the tangential acceleration is also constant and is α a = r (9.9) Applying Eq. (9.8) to an object set to rotate with a constant angular acceleration and an initial angular velocity ω , 0 gives its final angular velocity ω after a time interval, t,  as  α ω = ω  0  t , (9.10) Eq. (9.10) is the first equation of rotational motion which is analogous to the first equation of one dimensional motion (see Unit. 2). Defining the initial angular position of the object as θ  t0at conveniently could be taken zero, and  its final angular position as θ, the analogy between one dimensional linear motion and angular  motion enables one to express the remaining angular equations of motion as:    ω  θ  =  t (9.11) 1 2 θ     ω0 t     α  t 2 . (9.12) ω   ω   2 α (θ ) 0 . (9.13)


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Anthony Lee UC Santa Barbara

"I bought an awesome study guide, which helped me get an A in my Math 34B class this quarter!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.