×

### Let's log you in.

or

Don't have a StudySoup account? Create one here!

×

or

## Week 5 Regression Team Paper (Real Estate)

by: smartwriter Notetaker

16

0

7

# Week 5 Regression Team Paper (Real Estate)

Marketplace > Week 5 Regression Team Paper Real Estate
smartwriter Notetaker
CSU - Dominguez hills
GPA 3.0

Get a free preview of these Notes, just enter your email below.

×
Unlock Preview

Week 5 Regression Team Paper (Real Estate)
COURSE
PROF.
No professor available
TYPE
Study Guide
PAGES
7
WORDS
KARMA
50 ?

## Popular in Department

This 7 page Study Guide was uploaded by smartwriter Notetaker on Monday November 16, 2015. The Study Guide belongs to a course at a university taught by a professor in Fall. Since its upload, it has received 16 views.

×

## Reviews for Week 5 Regression Team Paper (Real Estate)

×

×

### What is Karma?

#### You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 11/16/15
Regression Analysis on Real Estate Data Set – Team B RES 342 Week 5          Page 1 Regression Analysis in Real Estate Data Set Learning Team B RES342 Research and Evaluation II Date Teacher Regression Analysis on Real Estate Data Set – Team B RES 342 Week 5          Page 2 Regression Analysis in real Estate Data set During a research all variables must be considered and closely examined by the  researcher.  From the introduction of the research to the closing decision the researcher  must carefully review the details and make adjustments to the test accordingly.  This  research project will examine housing sales and the impact of certain independent  variables on the dependent variable – price.   Purchasing a home can be one of the most  complicated processes an individual will encounter in life.  Many factors must be  considered to ensure the right purchase for the family making the decision.  An individual should consider the size of the home, number of bedrooms, amenities, and the location of  the home.  As a part of Team B’s research the group will test to determine if the distance  of the home from the town center is a variable that shows a significant effect on the  prices of a house.  In week three and four, Team B tested the impact of the number of bedrooms on  pricing of houses.  The research focused in on houses with four or more bedrooms versus  houses with less than four bedrooms.  Parametric hypothesis testing and non­parametric  testing both did not provide data that would allow the rejection of the null hypothesis that houses with four bedrooms or more do not have a higher mean selling price per square  foot that houses with less than four bedrooms.  This week Team B will conduct  regression analysis to determine if there is a correlation between the distance of the home from the town center and the price of the home.  The regression analysis will indicate the  Regression Analysis on Real Estate Data Set – Team B RES 342 Week 5          Page 3 impact on the price that the variable distance accounts for in the dependent variable,  pricing.  The testing will begin with a line test to determine if there is a linear relationship between the variables, test the variables for significance, perform a regression analysis  and provide a business case analysis of the data. The Line Test Hypothesis Statement The null hypothesis is that there is no linear relationship between the variables.   The Alternate hypothesis is that there is a linear relationship between the variables. This project examines the relationship between two variables distance and price;  therefore the problem is appropriate for the use of regression analysis.  The first step in  examining the data is to create a visual display – a scatter plot to determine if there  appears to be an initial relationship between the variables. (Doane & Seward, 2007). Regression Analysis on Real Estate Data Set – Team B RES 342 Week 5          Page 4 The scatter plot reveals that there may be some linearity to the data however the  correlation does appear weak. The scatter plot will provide the initial indication that a  weak negative correlation exists between price and distance from the town center,  however; the scatter plot does not allow the researcher to definitively quantify the  strength of the relationship between the variables.  The test statistic on the linear  relationship and a sample correlation coefficient needs to be calculated.   Decision rule If the probability value calculated is less than, 0.05, reject the H0. Test Statistic  The calculated test statistic is 0.003. Decision  The calculated test statistic is less than 0.05. therefore the null hypothesis is  rejected. Variables test    A variables test is conducted to determine if the variable distance from the town  center is statistically significant. Hypothesis statement Regression Analysis on Real Estate Data Set – Team B RES 342 Week 5          Page 5 The null hypothesis, H0, is the variable distance from the town center is not  statistically significant.  The alternate hypothesis is that the variable distance from the  town center is statistically significant.   Decision rule If the probability value calculated is less than, 0.05 reject the null hypothesis. Test Statistic  The test is 0. Decision  The calculated test statistic 0 is less than .05. so the null hypothesis is rejected. Regression analysis ­  Regression Analysis r²  0.120  n   105  r   ­0.347  k   1  Price Std. Error   44.392  Dep. Var.  ANOVA  table Source SS   df   MS F p­value Regression  27,791.4863  1    27,791.4863 14.10 .0003  202,976.102 Residual 9  103    1,970.6418   230,767.589 Total 1  104          Regression output confidence interval Regression Analysis on Real Estate Data Set – Team B RES 342 Week 5          Page 6 p­ 95% 95% variables  coefficients std. error    t (df=103) value lower upper 1.38E­ Intercept 270.1670  13.7646   19.628  36 242.8681 297.4658 Distance ­3.3540  0.8931   ­3.755  .0003 ­5.1253  ­1.5827  The null hypothesis that there is no relationship between price and distance from the town center has been rejected.  The correlation coefficient  r= ­.0347 show that there is a  negative correlative relationship between price and distance from  the town center, in  other words, homes with less distance from the town center have been shown to have  higher prices than towns with greater distance from the town center.   The critical value for a left handed test of significance is t.05 ­1.6596.  The t statistic     for significance of the correlation is ­3.755, which is less than the critical value of           t.05 ­1.6596, therefore we conclude that the true correlation is negative.   Conclusion Team B concludes that a significant correlation exist between prices of a homes  when compared to the distance from the center of the city in miles. Based on this linear  regression analysis of a sample of 105 previously sold homes Team B rejects the null  hypothesis that no significant correlation exist between the prices of a house compared to  the distance from the center of the city in miles.  Team B does submit a caution that  whereas the correlation is statistically significant, the practical application of this  2  information to use in pricing homes has to be moderated by the fact that the r calculated  in the regression analysis is low, only 0.120, which indicates that only 12% of the change in price is explained by distance from the town center.  The 88% of unexplained variance  Regression Analysis on Real Estate Data Set – Team B RES 342 Week 5          Page 7 reflects other factors (e.g. size of home, number of bedrooms, number of bathrooms,  presence or absence of a swimming pool, presence or absence of an attached garage,  condition of the home, quality of the local schools, and other variables.) References Doane, D. P. & Seward, L. E. (2007).  Applied statistics in business and economics. Boston, MA: McGraw­Hill Irwin.  Retrieved March 12, 2011 from University of Phoenix, Resource, RES­342—Business Research Methods II:

×

×

### BOOM! Enjoy Your Free Notes!

×

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

## Why people love StudySoup

Jim McGreen Ohio University

#### "Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Anthony Lee UC Santa Barbara

#### "I bought an awesome study guide, which helped me get an A in my Math 34B class this quarter!"

Jim McGreen Ohio University

#### "Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Parker Thompson 500 Startups

#### "It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!
×

### Refund Policy

#### STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

#### STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com