### Create a StudySoup account

#### Be part of our community, it's free to join!

Already have a StudySoup account? Login here

# mat 117 week 1 DQ's 4 different explanation

CSU - Dominguez hills

GPA 3.0

### View Full Document

## 15

## 0

## Popular in Course

## Popular in Department

This 0 page Study Guide was uploaded by smartwriter Notetaker on Monday November 16, 2015. The Study Guide belongs to a course at a university taught by a professor in Fall. Since its upload, it has received 15 views.

## Similar to Course at University

## Reviews for mat 117 week 1 DQ's 4 different explanation

### What is Karma?

#### Karma is the currency of StudySoup.

#### You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 11/16/15

Week 1 D0 1 Due Day 2 Please post a 150 300 word response to the following discussion question by clicking on Reply Explain three rules for exponents listed in the chart on p 239 section 42 Do not explain the first two definitions listed in the table Exponent of 1 or 0 Create an expression for your classmates to solve that uses scientific notation and at least one of the rules for exponents you have described Consider responding to our classmates by assisting them in solving the problem you created developing their explanations of the rules of exponents or describing real life situations where their examples might exist Explanation 1 The power rule The positive exponents are easy to solve as you just multiply the powers X with a power of 26 X26 X 12 for a power if the problem has a negative exponent inside the parerethisis and a positive outside then the solution is positive and a fraction 1 over X And the power number if they are both negative then the power is positive Raising a product to a power For any real number a and b and any integer n abpower of n a power of n b power of n to raise a product to the nth power raise each factor toto the nth power Raising a quotient to a powerand any integer n for any real numbers a and b b and o to raise a quotient to the nth power raise both the numerator and the denominator to the nth power raising power to power a power of 46 Explanation 2 The product rule involves multiplying a variable times itself to the exponent quanity stated and then multiplying by each answer of the exponent and then aquiring a condensed solution If the bases are the same then just add the exponents AmAnAmn The rule for raising a product to a power is distributing the variable to a corresponding exponent ABn AnBn The power rule makes the integer or variable multiply by all exponents in the equation There by making the solution to be Amn Amn All the rules for exponents have much in common Determining the proper multiplication steps to form a solution is the thing to keep in mind The parentheses tell us Where to apply the exponent In earlier math the parenthesis also tell us to solve it first The negatives and positives are similar in exponents as they are in regular equations Example for Classmates 222343 Explanation 3 The rst rule is the Product Rule this is when you have a number raised to a power multiplied by another number raised to a power The easiest way to get your solution is multiply the numbers and add the exponents If you are dividing then you use the Quotient Rule You divide the numbers and then subtract the exponents and in this speci c rule the numbers that are being divided absolutely can not equal zero The Power Rule is when a number is being raised to an exponent and the answer to that is being raised to another exponent In this case you have your number and you multiply the two exponents together There are several rules to exponents however they are fairly simple it seems wi just remember the rules and I think this part of algebra will be fairly simple Problems 32 x 43 2232 4 52 Explanation 4 Multiplying Powers with Like Bases So for any number a and any positive integers m and n aquotm aquotn aquotmn When multiplying with exponential notation if the bases are the same keep the base and add the exponents Dividing Powers with Like Bases For any nonzero number a and any positive integers m and n aquotmaquotn aquotmn So when dividing with exponential notation if the bases are the same keep the base and subtract the exponent of the denominator from the exponent of the numerator Negative Integers as Exponents For any real number a that is nonzero and any integer n aquotn 1aquotn Solve aquot5 aquot3 Week 1 D0 2 Please post a 150 300 word response to the following discussion question by clicking on Reply How is dividing a polynomial by a binomial similar to or different from the long division you learned in elementary school Can understanding how to do one kind of division help you with understanding the other kind What are some examples from real life in which you might use polynomial division Explanation 1 Polynomial division is quite similar to the method of long division that l was taught back in my elementary school Instead of using numbers as we did back in elementary school there are now variables to deal with However the process is effectively the same We go through the problem term by term step by step just like in numerical long division The problems steps are the same and can result in remainders If you understand how to do the numerical type of long division it is quite easy to extend the knowledge to polynomial division As long as you know how to multiply monomial terms with variables equivalent to multiplication of numbers in the long division process and subtraction of terms equivalent to the subtraction in numerical long division the actual process is the same Also addition can be used to check certain answers within the problem A person can use polynomial division in real life if they are trying to build on to a room or garage if the length is known and the perimeter is needed Explanation 2 When dividing polynomials by a binomial it is actually very similar due to the fact the you are using the same steps as you would when you are dividing as such in long division the differences that you would see are that you are using variables in your division instead ofjust numbers but like I said earlier the steps are the same rst you divide then multiply then subtract and nally bring down the next term I think that it is very helpful to understand one kind of division that will help you when it is similar to another kind This will help you better understand more on how to do the problems that are different just because you have an understanding or the steps that you need to do To be honest I can not think of any examples that would be related to real life experiences right off the top of my head I am sure there are many examples but I can not think of any right now Explanation 3 Dividing by a Polynomial by a Binomial The long division as it is performed in arithmetic we divide and we repeat the following procedure To carry out long division 1 Divide 2 Multiply 3 Subtract and 4 Bring down the next term Then we repeat the process two more times We check by multiplying the quotient by the divisor and adding the remainder Looking at long division with polynomials we use this procedure when the divisor is not a monomial we write polynomials in descending order and then write in missing terms This adding subtracting dividing and multiplying are used in everyday scenarios and are a very useful tool When you learn one kind of division it does help in understanding the other This type of dividing is useful in measuring rooms or spaces of area used it recently in adding an additional room on to a rental home just purchased Explanation 4 Dividing a polynomial by a binomial is similar to what was learned in elementary school scary at rst glance ln elementary school you did not have to divide multiple expressions at the same time You would combine them and then divide This way seems quicker for the type of problems that are being solved Remembering to use the exponents and the way a remainder is written are the only differences I can see at this point I think knowing how to divide one way also helps you to understand how to do it another way It is the working with the exponents and the function signs that confuses me at times You could use this type of division for guring how much of something it would take to ll or cover a given area such as lawn seed paint roo ng or siding Doing construction for most of my life used it a lot and did not know that it had a term associated to it

### BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.

### You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

## Why people love StudySoup

#### "I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

#### "Selling my MCAT study guides and notes has been a great source of side revenue while I'm in school. Some months I'm making over $500! Plus, it makes me happy knowing that I'm helping future med students with their MCAT."

#### "There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

#### "Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

### Refund Policy

#### STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

#### STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.