New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

exam #3 study gui

by: Eleonora Sacks

exam #3 study gui BSC 2023

Eleonora Sacks
GPA 3.92

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

A summary of what's going to be on monday's exam, complete with pictures and probable test questions.
Human Biology
Paul Sharp
Study Guide
Human Bio, Bio
50 ?




Popular in Human Biology

Popular in Biology

This 25 page Study Guide was uploaded by Eleonora Sacks on Saturday April 2, 2016. The Study Guide belongs to BSC 2023 at Florida International University taught by Paul Sharp in Spring 2016. Since its upload, it has received 106 views. For similar materials see Human Biology in Biology at Florida International University.


Reviews for exam #3 study gui


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 04/02/16
4/2/16 3:04 PM EXAM #3 STUDY GUIDE Digestive System: • Gastrointestinal tract: a continuous hollow tube extending from the mouth to the anus. AKA: alimentary tract • It's made up of the: • Oral cavity: the mouth o Hard palate: bony anterior part of the roof of the mouth o Soft palate: only muscular portion at the back roof of the mouth o Uvula: tissue tag hanging from the soft palate o Salivary glands: glands associated with the mouth, they secrete saliva. Saliva isn't secreted under the tongue o Saliva: solution of water, mucus, salivary amylase, lysozyme, and bicarbonate. (salivary amylase is the first enzyme that begins the digestion of starch--carbs) o Tongue: occupies the floor of the mouth. Has 4 functions: § Grips food § Repositions food between teeth § Mixes food with saliva (because the saliva has salivary amylase- an enzyme that starts to break down the carbohydrates in food we eat) § Movements form the bolus (the mush of the food we are chewing that goes down when we swallow) o Teeth: § Lie in sockets in the gum covered margins of the maxilla and mandible § 2 main divisions: crown and root § 32 teeth in adults § Composed of: ú Enamel: hard material composed of calcium compounds that cover the crown (the part of the tooth that is above the gum) ú Dentin: thick layer of bone-like material beneath enamel ú Pulp: inner tissue containing blood vessels and nerves § § Problems: ú Dental caries (cavity): hole in the tooth that results from acids produced by bacteria metabolizing sugar, the hole is close to the pulp when it starts to hurt the person. ú Periodontitis: inflammation of the periodontal membrane that lines tooth sockets, this causes loss of bone and loosening of tooth • Pharynx: the back of the throat • • Esophagus • Stomach • Small intestine: absorbs nutrients • Large intestine: absorbs water • About 30 feet long in humans • Accessory organs: the ones that aren't part of the tubing (tract) • 5 processes necessary so that the digestive process happens: 1. Ingestion: taking of food or liquid into the body through the mouth 2. Digestion: breaking down of large nutrient molecules into smaller molecules that can be absorbed § Mechanical digestion: cutting and mastication of food, peristalsis § Chemical digestion: digestive enzymes hydrolyze macromolecules 3. Movement (mixing): food is passed from one organ to the next via peristalsis 4. Absorption: taking in of subunit molecules (like sugars, etc) by cells or membranes. Happens in the small intestine 5. Elimination: process of expelling substances from the body via defecation (pooping) • Peristalsis: we don't have to think about our body digesting to make it happen, it happens on its own. • Reverse peristalsis: when there's something wrong with the food and makes us vomit or expel it. • Smooth muscles have peristalsis, except the bladder which is a smooth muscle but we have control over it (if we didn't we would pee our pants all the time) • • Pharynx: • Fancy word for throat • Portion of the GI tract between the mouth and esophagus • Serves as a passageway for food and also air on its way to trachea (the trachea is parallel and in front of the esophagus) • Esophagus: muscular tube for moving swallowed food from the pharynx to stomach • Swallowing: composed of a voluntary phase and involuntary phase (reflex action): • Soft palate moves back to close off nasal passage via uvula. This is so that food doesn't get into the nasal passage. • Epiglottis: covers the glottis, which is the opening to the larynx (voice box). The epiglottis is like a lid on the glottis, it opens up either the path to the trachea or the esophagus. The epiglottis doesn't work when we are swallowing and laughing at the same time. • • Peristalsis: wavelike contractions that propel the bolus along the esophagus (smooth muscles in the GI tract) • • Sphincters: muscle that surrounds a tube to open or close by relaxing or contracting. • Lower gastroesophageal sphincter: marks the entrance of the esophagus to stomach. It contracts to prevent the stomach acids from going up the esophagus (although, when this happens it's called heartburn) • Heartburn: lower gastroesophageal sphincter fails to open and allow food to go into the stomach or it fails to close and the stomach acids go up the esophagus. • Stomach: a muscular sac that mixes food with gastric juices to form chyme which enters the small intestine: • 1L capacity, has a pH of 2 (same as a car battery) • Stores food, doesn't absorb nutrients. It empties 2-6 hours • Initiates digestion of proteins with enzyme pepsin • Controls the movement of food into the small intestine • Gastric juice: produced by gastric glands of the stomach, includes pepsin mucus and hydrochloric acid (HCl) • The HCl destroys bad bacteria that enter in the food • Chyme: thick semi-fluid food material that passes from stomach to the small intestine • Pyloric sphincter: regulates chyme entry into the small intestine • The first place that chemical digestion happens is in the mouth, then in the stomach. • Pancreatic juice joins with the bile • Small intestine: • Long tube-like chamber of GI tract between stomach and large intestine • Contains enzymes secreted by pancreas and enters via duct in duodenum to digest carbs, fats and proteins • Receives bile produced by the liver and is stored by the gallbladder that is released into the duodenum. The bile breaks things down into small globules • Parts: o Duodenum: first 10 inches of the small intestine o Jejunum: 2nd part of the small intestine, 8 feet long o Ileum: 3rd part of the small intestine, 12 feet long • Nutrients are absorbed by the small intestine • Villus: small fingerlike projections of the inner small intestine wall (mucosa) o Outer layer has cells that have microvilli (brush border) o Blood capillaries and small lymphatic capillaries (lacteal) are present. • • Lactose intolerance: inability to digest lactose because of an enzyme deficiency • These people do not have brush border enzyme lactase • Symptoms: o Diarrhea (due to fluid retention) o Gas, bloating and cramps when bacteria break o Down lactose anaerobically • People that aren't lactose intolerant are mutants, what is supposed to happen is that the only time that people are supposed to break down lactose was when they were a baby so they could break down the mother's milk. But after a mutation, the gene that stopped the breakdown of lactose after being a baby was changed in some people so that people can breakdown lactose their whole lives. • • Accessory organs: • Pancreas: internal organ that produces digestive enzymes, it also produces hormones insulin (helps lower sugar levels) and glucagon (helps elevate sugar levels). Produces pancreatic juice that contains: o Pancreatic amylase: enzyme in the pancreas that digests starch to maltose o Trypsin: protein-digesting enzyme o Lipase: fat-digesting enzyme secreted by the pancreas • • Bile: emulsification agent that is produced by the liver and stored in the gallbladder. It splits one big globule into tiny droplets of fat that are easier to break down. • Test question: what is the enzyme responsible for breaking down proteins in the stomach? Answer: pepsin. • Accessory organs: they don't make up the tubing of the GI tract • Pancreas: produces pancreatic juice that has 3 important enzymes: pancreatic amylase, trypsin and lipase. The pancreatic juice is dispersed into the duodenum in the small intestine. • o Glucose is stored in the human body as glycogen o Plants store glucose as starch o Diabetes: § Type 1: pancreas doesn't produce enough amounts of insulin (so the glucose can't get into the cells), typically diagnosed before 15 years of age § Type 2: pancreas doesn't make enough insulin or the body's cells are insulin resistant, typically diagnosed after 40 years of age • Liver: dark red internal organ that: o Detoxifies blood: hepatic portal vein brings food to liver from the GI tract capillaries o Stores glucose as glycogen, iron, vitamins A,D,E,K and B12 o Produces plasma protein and urea (primary nitrogenous waste product that results from breaking down amino acids) o Produces bile (that is stored in the gallbladder) o Regulates cholesterol: § Good cholesterol: HDL § Bad cholesterol: LDL o Liver diseases: § Jaundice: skin turns yellowish from abnormal bilirubin (bile pigment) in blood meaning the liver is malfunctioning § Hepatitis: inflammation of the liver, often caused by the Hepatitis B virus § Cirrhosis: chronic irreversible injury to the liver tissue, caused by excessive alcohol consumption over long periods of time and Hepatitis C virus. • Large intestine: last major portion of the digestive tract that extends from the small intestine to the anus and • Contains: o Cecum: the vermiform appendix is at the end of the cecum, the cecum is a blind pouch at the beginning o Vermiform appendix: small tubular appendage that extends out from the cecum that aids in fighting infections. If the appendix is infected it is removed because the infections it fights might explode into the body o Colon: major portion of the large intestine, consists of the ascending colon, transverse colon, descending colon and sigmoid colon o Rectum: terminal end of the digestive tube, last 20 cm of the large intestine, stores feces o Anus: outlet of the digestive system, where excretion occurs • Approx. 5 feet long • Main function: absorb water • DOES NOT absorb nutrients, only vitamin K and B complex • • The Skeletal System: • System of protection and support • The skeleton is composed of bones, cartilages (prevents the bones from rubbing), joints and ligaments (connect bones together) • Skeleton starts forming when the embryo is 6 weeks old • 206 named bones in the skeletal system • Make up 20% of body weight • Tendon: connects bone to muscle • Functions: • Supports the body • Protects soft body parts (heart) • Produces blood cells • Stores minerals (calcium and phosphate, these are what human bones are made of) and fats (fat is stored in the middle of the bone in yellow bone marrow) • Allows flexible body movement (along with the muscles) • Parts of the skeleton: • Axial skeleton: main axis, forms the long axis of the boxy and includes the bones of the skull vertebral column and the rib cage • Appendicular skeleton: consists of bones of the limbs • Cartilage: white flexible semi opaque connective tissue, chondrocytes (exocytosis of matrix that makes the cartilage) are the mature cell form of cartilage, has no nerves or blood vessels, it prevents bones from rubbing each other. Takes long to repair • Ligament: band of fibrous tissue that connects bone to bone, has cells called fibroblasts • Tendons: cord of fibrous tissue attaching muscle to bone, has cells called fibroblasts • Every week we recycle 5 to 7% of our bone mass • Chemical composition of bones: • Organic components: osteoblasts, osteocytes and osteoclasts. They are composed of living tissue. o Osteoblast: they form the bone by exocytosis of matrix and they promote the deposition of calcium salts into the matrix o Osteocytes: maintain the structure of the bone, they are mature bone cells derived from osteoblasts o Osteoclasts: large cells that reabsorb or break down bone matrix, they assist in returning calcium and phosphate to the blood. These acts when there is a weak bone. Also these are the cells that allow the body to grab calcium from bones if it needs it • Inorganic components: hydroxyapatites (mineral salts), largely composed of calcium phosphate. • When we don't ingest enough calcium, the body needs it so bad that it grabs it from the bones. • Ossification: formation of bone • Structure of a long bone: • Compact bone: highly organized and composed of tubular units called osteons (like coffee stirs) These have osteocytes that occupy small cavities (lacunae). Canalicuni connect lacunae to one another and to the central canal. The central canal contains small blood vessels and nerve fibers. • Spongy bone: has an unorganized appearance. Its composed of numerous struts or thin plates (trabeculae) separated by uneven spaces, these spaces are often filled with red bone marrow • Intramembranous ossification: flat bones that develop between sheets of embryonic fibrous connective tissue membranes e.g. skull clavicles and mandible • Endochondrial ossification: happens in long bones: arms and legs: occurs at 6 weeks into the embryo. First a cartilage model is formed, then it grows, then there's a development of primary ossification center (spongy bone) (starts to provide resources for the bone to form), then the medullary )marrow) cavity develops, then the secondary ossification center (happens after the baby is born), lastly the formation of articular cartilage and epiphyseal plate (cartilage lining). • When do our bones stop growing: Girls on average 18 and boys on average 21. • Muscle types; 1. Smooth muscle: consists of spindle shaped, nonstriated muscle cells: they are located in the walls of hollow internal organs and blood vessels, has a single nucleus in cell, involuntary muscle that is slow to react, does not fatigue easily. 2. Cardiac muscle: specialized muscle lf the heart, striated (areas of dark light dark light dark light),has 1 or 2 nuclei per cell, cardiac cells interlock at intercalated disks, involuntary muscle 3. Skeletal muscle: composed of cylindrical multinucleate cells with obvious striations, consists of muscles attached to the body's skeleton, voluntary muscle. • Types of muscle: • • Functions of Skeletal Muscle: 1. Support: allows us to stand erect 2. Movement of bones and other body structures 3. Maintenance of constant body temp 4. Movement of fluids in the cardio and lymphatic systems 5. Protection of internal organs and stabilization of joints: o Muscles pad the bones o Muscular wall in abdominal region protect internal organs o Muscle tendons • How do muscles move bones? • They work in pairs: o Each muscle is concerned with the movement of only 1 bone o When muscles contract they shorten o Muscles can only pull, not push • Origin: the end of a muscle attached to a stationary bone • Insertion: the end of a muscle attached to a movable bone o When muscle contracts it pulls on tendons at its insertion and the bone moves o The nervous system stimulates an appropriate group of muscles o EG: the prime mover and synergists • Antagonist: muscle that acts opposite another muscle (eg: bicep and triceps) photo • Structures of muscle cells: • Sarcolemma: plasma membrane of a muscle fiber, forms the tubules of the T system. Encases hundreds to thousands of myofibrils • T (transverse) tubules: membranous channel that extends inward toward sarcoplasmic reticulum • Sarcoplasmic reticulum: smooth endoplasmic reticulum of muscle cells. Surrounds myofibrils and stores calcium ions • Myofibril: rod-like bundle of contractile filaments found in muscle cells. They are made out of repeating units called sarcomere (they lie between z lines, as seen in the picture) • • Hierarchical order of a muscle: • 1. Fascicle: a bundle of muscle fibers surrounded by connective tissue 2. Muscle fibers (Myofiber): muscle cells 3. Myofibrils: contractile portion of muscle fiber (cells) that contains a linear arrangement of sarcomeres o They run the entire length of the muscle (so they are as long as your bicep or triceps etc) o They are composed of even smaller myofilaments 4. Myofilament: responsible for the actual contraction of muscles. o Sliding filamentmodel: muscle contraction based on the movement of actin fibers in relation to myosin filaments. o Two types: 1. Actin: makes up thin filaments in myofibrils. 2. Myosin: one of the contractile proteins of muscle. Makes up thick filaments in myofibrils. They have little arms going out of the sides and at the end of each arm there's a myosin head, and these are like tugging and pulling the muscle in opposite direction to contract the muscle. Picture. § In the picture: the myosin is the yellow space in the middle, the actin is the pinkish part in the edges and the dark part is made up of the mix of both. § 5. Sarcomeres: the smallest contractile portion of muscle that is arranged linearly within myofibril and extends from one z line to the next z line. • Neuromuscular junction: • Where the axon of a motor neuron is attached to a muscle. • The axon terminal communicates with the muscle through neurotransmitters. • The muscle has ligand gated channels that allow the sodium to rush in and cause the action potential to move along the muscle until it hits the sarcoplasmic reticulum which releases calcium. • There's tropomyosin, that's like a rope that covers the myosin binding sites (what causes the myosin to grab onto the actin and contract the muscle). • Attached to the tropomyosin are troponin, and these are turned on by calcium, when this happens it lifts the tropomyosin up and allows the myosin to bind to the actin and contract the muscle. • • • • • • • Rigor mortis: when a person or animal dies and the limbs stiffen out because of a chemical change in the muscles. • Immunity and Lymphatic system: • Lymph organs: organ of lymphatic system other than lymphatic vessels 1. Primary: red bone marrow and thymus gland 2. Secondary: lymph nodes, spleen, tonsils, appendix and Peyer's patches • Red bone marrow: produces red blood cells, like: • Leukocytes (allergies, especially pollen): neutrophils (phagocytosis), eosinophils and basophils (both degranulate, throw chemicals at things that shouldn't be in the body). These are like the "common people in the castle" • Lymphocytes: B cells (mature in bone marrow and produce antibodies), T cells (mature in thymus), natural killer cells. These are like the "military, king's guard". • Thymus: involved in the maturation of T cells, only about 5% pass autoreactivity test. Located between the trachea and the sternum superior to the heart. • Spleen: stores and filters blood; macrophages phagocytose pathogens and debris. Largest lymphatic organ • Lymph nodes: mass of lymphatic tissue located along the course of a lymphatic vessel, macrophages phagocytose pathogens and debris. • Tonsils: patches of lymphatic tissue, first to encounter pathogens • Peyer's patches: lymphatic tissue located within the appendix and encounters pathogens. • Autoimmune disease: when your own body attacks itself. The thymus is responsible so that this doesn't happen. • One of the functions of the lymphatic vessel is to pick up what the circulatory system leaks out: • Immune system: • Functional system whose components attack foreign substances or prevent their entry to the body 1. Innate immunity: skin, mucous membranes. A mechanism of defense that doesn't depend on prior exposure to the invader, nonspecific (broad) (the skin protects against everything). Immediate. • First line of defense: o Skin: layer of protection associated with the innate immunity system. Like the castle wall. Oil and sweat glands give skin surface pH of 3-5, sweat contains lysozyme (digests bacterial cell wall), normal flora include non-pathogenic bacteria and fungi, epidermis 10-30 cells thick and dermis 15-40 times thicker. o Mucous membranes: 1. Digestive tract: saliva contains lysozyme (also found in tears), acidic environment of stomach pH of 1.5-3.5, digestive enzymes in intestine, nonpathogenic normal flora, vomiting and diarrhea may expel pathogens. 2. Respiratory tract: pathogens trapped by mucus in bronchi and bronchioles, ciliated epithelial cells sweep mucus toward the glottis, coughing and sneezing expels pathogens. 3. Urogenital tract: vaginal secretions viscous and acidic, secretions promote growth of normal flora, acidic urine of both sexes may wash out pathogens. 2. Adaptive (acquired) immunity: specific to the particular non-self material, requires time for development, occurs more quickly and vigorously on secondary response. • Second line of defense: phagocytes, inflammation, complement and interferon, chemical signals: o Recognize a wide spectrum of pathogens without a need for prior exposure o Key players include neutrophils, monocytes that become macrophages o These cells phagocytose pathogens and trigger the release of cytokines (chemical signals, protein hormones that let other immune system "soldiers" or cells where the problem is) o Results in inflammation and specific immune responses o Inflammation: occurs over seconds, minutes, hours and days § Histamine: chemical that dilates blood vessels § Bradykinins: make the spaces that make the blood vessels leaky even larger so there is more leakage § Prostaglandins: responsible for the pain (eg: sunburnt skin pain) 1. Dilation of blood vessels increases blood flow at site (RED & WARM) 2. Increased permeability of capillaries causing edema (tissue SWELLING). This allows the cells to move to the site of the harm quicker. 3. Tissue swelling puts pressure on nerve endings (PAIN and potential loss of function) 4. Macrophages and neutrophils release cytokine tumor necrosis factor (TNF) which acts on hypothalamus to raise the body temp (fever) 5. Cell death (necrosis) always occurs to some degree during inflammation o Complement: 30 proteins that are produced by the liver. They circulate freely in blood plasma. When activated, one forms a domino effect on another causing a cascade of events that form a membrane attack complex (MAC) that form pores in pathogens that have lipid membrane to induce lysis (causes the bad bacteria to explode by making holes in its membrane) o o Interferon: antiviral agent produced by an infected cell that blocks infection of an uninfected cell (degrades RNA and blocks protein production). It works especially with virus. Type of cytokine. o o Cytokines: protein hormones used by immune cells to communicate. Can affect same cells that produce them, cells nearby or cells distant in body. EG: interferon. o o • Third line of defense: ADAPTIVE IMMUNITY o Important aspects of the immune response: 1. Non-self recognition: ability to distinguish self-antigens from non-self a. Antigen: foreign substance that stimulates and immune response. EG: dust, pollen b. Antibody: protein produced in response to the presence of an antigen 2. Antigen-specific: recognizes and is directed against specific antigens 3. Systemic response: immunity is not restricted to initial infection site 4. "Memory": recognizes and mounts stronger attack on previously encountered pathogens. o Major histocompatibility complex (MHC): cell surface glycoproteins, polymorphic. Think of them as flag poles on the surface of cells. Only T cells can decipher them. § MHC class 1 protein: found in eukaryotes (cells that have nucleus), has cytotoxic T cells (CD8) respond to endogenous antigen (generated inside the cell) bound to MHC class 1 protein. The CD8 is the only cell that understands the signal. When the CD8 connects with an infected cell and realizes that something is wrong, it produces cytokines that communicate with the infected cell through its own cytokines which cause the CD8 to clone itself and attack the infected cell until it causes apoptosis (to explode) § § MHC class 2 protein: ú Found only on professional antigen presenting cells like Macrophages and B cells ú Helper T cells (CD4) respond to exogenous antigen (comes from outside the cell) bound to MHC class 2 proteins ú When bacteria is engulfed by macrophages, the Helper T cell connects with the macrophages, then clones itself, and then has 2 choices: to produce a humoral response (communicates with a B cell that clones and the "general" (CD4) signals them to fire their arrows towards the infected cell) or a cellular response (it "juices up" the macrophage and destroys the bacteria) o Two overlapping arms of immunity: § Cell-mediated immunity: (like hand to hand combat), associated with cell surfaces, T-cell receptors that are unable to see free antigens ú T cells: 2 main types that include CD8 (directly attack cells that carry specific antigens) and CD4 (regulate immune responses of other cells, they are like the "general" during battle) • Produced in red bone marrow, they migrate to the thymus to mature and be selected • T cell receptors recognize antigen presented on self MHC molecules § Humoral immunity: (like archers shooting arrows), based on antibodies on cell surfaces and in body fluids (blood, lymph, etc). ú B cells: bind to specific antigen with its antibody (B cell receptor) and also serve as antigen presenting cell to Helper T cells. They are produced in red bone marrow. Immunoglobulin synthesis happens in bone marrow. Tested for accuracy in red bone marrow as well. Types: • Plasma B cells: are large B cells that have been exposed to antigen, they produce and secrete large amounts of antibodies, are short lived cells that undergo apoptosis • Memory B cells: are specific to the antigen encountered, they live for a long time and can respond quickly following a second exposure to the same antigen. • • • • HIV (Human immunodeficiency virus): a retrovirus that attacks the body's immune system, causes AIDS. • HIV mounts direct attack on TH cells by binding to CD4 proteins on cell surface • HIV kills TH cells faster than they can proliferate over time • When CD4 and T cell numbers decline bellow 200 cells per microlitre of blood, the cell mediated immunity is lost. Respiratory System: • Ensures oxygen enters body while carbon dioxide leaves body • • Composed of: • Upper respiratory tract: conditions air as it enters the body. o Nasal cavity: air is humidified, heated. Has flaps of tissue. Has large hairs that filter air and mucus membranes that produce mucus. Capillaries of sub-mucosa warm and moisten air. Tear (lacrimal) glands drain into the nasal cavity (when we cry we get runny noses because the tears that don't drip out of our eyes go to our nose, this helps clean the nasal cavity. o Pharynx: place where pathways for air and food cross. Connects nasal and oral cavities to the larynx, § Tonsils: primary defense during breathing § Epiglottis: covers the entrance to the larynx. Prevents food from going to the larynx. Like the doors to the larynx (they open and close) § Uvula: tab of tissue at the back of throat it contracts when touches by food and prevents food from going into the nasal cavity. o Glottis: entrance to the larynx (covered by the epiglottis). Like the doorway to the larynx. o Larynx: voice box. Cartilaginous organ between pharynx and trachea. § Vocal cords: fold of tissue that vibrates to create vocal sounds] § Glottis: opens air flow in the larynx • • Lower respiratory tract: allows oxygen to enter the blood and waste gases to leave blood. o Trachea: windpipe, passage of air to bronchi. In front of the esophagus so that when we eat something big there's room for the trachea to move and not collapse. Consists of connective tissue, smooth muscle and cartilaginous rings. Has mucosal membrane that produces mucus (from goblet cells) and is lines with cilia that push the mucus upward. o Bronchus/Bronchi (plural): passage of air to lungs o Bronchioles: passage of air to alveoli o Lungs: contain alveoli (air sacs lined with surfactant which reduces water tension) that carry out the gas exchange. The right lung has 3 lobes and the left one has 2 because of the cardiac notch. o Diaphragm: skeletal muscle, functions in ventilation. What separates the abdominal cavity from the thoracic cavity. When we inhale it pushes down because the lungs expand and when we exhale it pushes up because the lungs compress. • • The groups of alveoli are called lobules. • The pulmonary artery takes deoxygenated blood to the capillaries of the alveoli and then the pulmonary vein takes oxygenated blood from the capillaries of the alveoli to the heart. • Air (oxygen) gets into the capillaries that go to the alveoli by diffusion. It goes from a high concentration in the capillaries to a lower concentration inside the alveoli. • External respiration: pulmonary gas exchange. CO2 from the capillaries is exchanged for O2 by the alveoli. • Internal respiration: systemic gas exchange by systemic tissue cells. Oxygen goes to tissue cells in organs and is exchanged for CO2 which goes into the capillaries • • Our cells produce CO2 when they do cellular respiration and when they separate glucose molecules. This is the CO2 that will be exchanged for the O2. It's also exchanged through diffusion • The right side of the heart pumps deoxygenated blood. • • If we didn't have a diaphragm we could not breathe • Valsalva maneuver: forceful attempt to exhale against a closed airway, like pinching the nose shut and closing the mouth while pressing out air as if blowing a balloon. This is done to equalize air pressure. • Spirometer: measures the volume of air that is inspired and expired by the lungs. • Total capacity of the lungs is 5800 ml. • Tidal volume: normal, shallow breaths. They amount 5000 ml approx. • There's always some air left in the lungs because if we get rid of all of the air, then the lungs collapse. This air is called residual volume. When someone "knocks the wind out of you", you can't breathe, you lost some of the residual volume.


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Kyle Maynard Purdue

"When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the I made $280 on my first study guide!"

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.