×
Log in to StudySoup
Get Full Access to UA - MATH 300 - Class Notes - Week 10
Join StudySoup for FREE
Get Full Access to UA - MATH 300 - Class Notes - Week 10

Already have an account? Login here
×
Reset your password

UA / Mathematics / MATH 511 / What do you mean by a graphing points?

What do you mean by a graphing points?

What do you mean by a graphing points?

Description

School: University of Alabama - Tuscaloosa
Department: Mathematics
Course: Numerical Analysis I
Professor: Roger sidje
Term: Spring 2016
Tags: MATH 300, Numerical Analysis, Math, Matlab, and project 2
Cost: 25
Name: MATH 300 Week 10 Notes
Description: The notes for week 10, including classes on 3/29 and 3/31, consist of a lot of helpful tips and code for our Project 2. Project 2 is due on Thursday, April 7.
Uploaded: 04/03/2016
8 Pages 199 Views 1 Unlocks
Reviews


.lst-kix_ohzxsp1deq34-0 > li:before{content:"" counter(lst-ctn-kix_ohzxsp1deq34-0,decimal) ". "}.lst-kix_ohzxsp1deq34-3 > li:before{content:"" counter(lst-ctn-kix_ohzxsp1deq34-3,decimal) ". "}ol.lst-kix_ohzxsp1deq34-8.start{counter-reset:lst-ctn-kix_ohzxsp1deq34-8 0}ol.lst-kix_ohzxsp1deq34-5.start{counter-reset:lst-ctn-kix_ohzxsp1deq34-5 0}ol.lst-kix_h70xyuvb0pq7-0.start{counter-reset:lst-ctn-kix_h70xyuvb0pq7-0 0}.lst-kix_ohzxsp1deq34-2 > li:before{content:"" counter(lst-ctn-kix_ohzxsp1deq34-2,lower-roman) ". "}.lst-kix_ohzxsp1deq34-1 > li:before{content:"" counter(lst-ctn-kix_ohzxsp1deq34-1,lower-latin) ". "}.lst-kix_ohzxsp1deq34-7 > li{counter-increment:lst-ctn-kix_ohzxsp1deq34-7}ol.lst-kix_3vyyr53pt88i-6.start{counter-reset:lst-ctn-kix_3vyyr53pt88i-6 0}.lst-kix_ohzxsp1deq34-7 > li:before{content:"" counter(lst-ctn-kix_ohzxsp1deq34-7,lower-latin) ". "}.lst-kix_h70xyuvb0pq7-4 > li{counter-increment:lst-ctn-kix_h70xyuvb0pq7-4}.lst-kix_ohzxsp1deq34-6 > li:before{content:"" counter(lst-ctn-kix_ohzxsp1deq34-6,decimal) ". "}.lst-kix_ohzxsp1deq34-8 > li:before{content:"" counter(lst-ctn-kix_ohzxsp1deq34-8,lower-roman) ". "}ol.lst-kix_h70xyuvb0pq7-6.start{counter-reset:lst-ctn-kix_h70xyuvb0pq7-6 0}ol.lst-kix_3vyyr53pt88i-3.start{counter-reset:lst-ctn-kix_3vyyr53pt88i-3 0}.lst-kix_ohzxsp1deq34-4 > li:before{content:"" counter(lst-ctn-kix_ohzxsp1deq34-4,lower-latin) ". "}.lst-kix_ohzxsp1deq34-8 > li{counter-increment:lst-ctn-kix_ohzxsp1deq34-8}ol.lst-kix_3vyyr53pt88i-0.start{counter-reset:lst-ctn-kix_3vyyr53pt88i-0 0}ol.lst-kix_h70xyuvb0pq7-3.start{counter-reset:lst-ctn-kix_h70xyuvb0pq7-3 0}.lst-kix_ohzxsp1deq34-5 > li:before{content:"" counter(lst-ctn-kix_ohzxsp1deq34-5,lower-roman) ". "}ol.lst-kix_ohzxsp1deq34-2.start{counter-reset:lst-ctn-kix_ohzxsp1deq34-2 0}.lst-kix_6atpr0wc9bjy-6 > li:before{content:"- "}.lst-kix_6atpr0wc9bjy-5 > li:before{content:"- "}.lst-kix_6atpr0wc9bjy-4 > li:before{content:"- "}.lst-kix_6atpr0wc9bjy-3 > li:before{content:"- "}.lst-kix_6atpr0wc9bjy-0 > li:before{content:"- "}.lst-kix_h70xyuvb0pq7-3 > li{counter-increment:lst-ctn-kix_h70xyuvb0pq7-3}.lst-kix_6atpr0wc9bjy-2 > li:before{content:"- "}.lst-kix_6atpr0wc9bjy-1 > li:before{content:"- "}.lst-kix_ohzxsp1deq34-5 > li{counter-increment:lst-ctn-kix_ohzxsp1deq34-5}ol.lst-kix_h70xyuvb0pq7-5.start{counter-reset:lst-ctn-kix_h70xyuvb0pq7-5 0}ol.lst-kix_ohzxsp1deq34-0.start{counter-reset:lst-ctn-kix_ohzxsp1deq34-0 0}.lst-kix_h70xyuvb0pq7-8 > li:before{content:"" counter(lst-ctn-kix_h70xyuvb0pq7-8,lower-roman) ". "}.lst-kix_h70xyuvb0pq7-1 > li{counter-increment:lst-ctn-kix_h70xyuvb0pq7-1}ol.lst-kix_ohzxsp1deq34-7.start{counter-reset:lst-ctn-kix_ohzxsp1deq34-7 0}.lst-kix_ohzxsp1deq34-4 > li{counter-increment:lst-ctn-kix_ohzxsp1deq34-4}.lst-kix_h70xyuvb0pq7-7 > li:before{content:"" counter(lst-ctn-kix_h70xyuvb0pq7-7,lower-latin) ". "}ol.lst-kix_3vyyr53pt88i-5.start{counter-reset:lst-ctn-kix_3vyyr53pt88i-5 0}.lst-kix_h70xyuvb0pq7-4 > li:before{content:"" counter(lst-ctn-kix_h70xyuvb0pq7-4,lower-latin) ". "}.lst-kix_h70xyuvb0pq7-5 > li:before{content:"" counter(lst-ctn-kix_h70xyuvb0pq7-5,lower-roman) ". "}.lst-kix_h70xyuvb0pq7-6 > li:before{content:"" counter(lst-ctn-kix_h70xyuvb0pq7-6,decimal) ". "}.lst-kix_3vyyr53pt88i-2 > li{counter-increment:lst-ctn-kix_3vyyr53pt88i-2}.lst-kix_h70xyuvb0pq7-0 > li:before{content:"" counter(lst-ctn-kix_h70xyuvb0pq7-0,decimal) ". "}.lst-kix_h70xyuvb0pq7-1 > li:before{content:"" counter(lst-ctn-kix_h70xyuvb0pq7-1,lower-latin) ". "}.lst-kix_3vyyr53pt88i-5 > li{counter-increment:lst-ctn-kix_3vyyr53pt88i-5}.lst-kix_3vyyr53pt88i-8 > li{counter-increment:lst-ctn-kix_3vyyr53pt88i-8}ul.lst-kix_6atpr0wc9bjy-8{list-style-type:none}.lst-kix_h70xyuvb0pq7-3 > li:before{content:"" counter(lst-ctn-kix_h70xyuvb0pq7-3,decimal) ". "}ol.lst-kix_ohzxsp1deq34-0{list-style-type:none}.lst-kix_h70xyuvb0pq7-2 > li:before{content:"" counter(lst-ctn-kix_h70xyuvb0pq7-2,lower-roman) ". "}ol.lst-kix_ohzxsp1deq34-2{list-style-type:none}ol.lst-kix_ohzxsp1deq34-1{list-style-type:none}ol.lst-kix_ohzxsp1deq34-4{list-style-type:none}ol.lst-kix_ohzxsp1deq34-3{list-style-type:none}ol.lst-kix_ohzxsp1deq34-6{list-style-type:none}ol.lst-kix_ohzxsp1deq34-6.start{counter-reset:lst-ctn-kix_ohzxsp1deq34-6 0}ol.lst-kix_ohzxsp1deq34-5{list-style-type:none}.lst-kix_h70xyuvb0pq7-7 > li{counter-increment:lst-ctn-kix_h70xyuvb0pq7-7}ol.lst-kix_ohzxsp1deq34-8{list-style-type:none}ol.lst-kix_ohzxsp1deq34-7{list-style-type:none}ul.lst-kix_6atpr0wc9bjy-4{list-style-type:none}ul.lst-kix_6atpr0wc9bjy-5{list-style-type:none}ul.lst-kix_6atpr0wc9bjy-6{list-style-type:none}ul.lst-kix_6atpr0wc9bjy-7{list-style-type:none}ul.lst-kix_6atpr0wc9bjy-0{list-style-type:none}ul.lst-kix_6atpr0wc9bjy-1{list-style-type:none}ol.lst-kix_3vyyr53pt88i-4.start{counter-reset:lst-ctn-kix_3vyyr53pt88i-4 0}ul.lst-kix_6atpr0wc9bjy-2{list-style-type:none}ul.lst-kix_6atpr0wc9bjy-3{list-style-type:none}.lst-kix_ohzxsp1deq34-2 > li{counter-increment:lst-ctn-kix_ohzxsp1deq34-2}.lst-kix_3vyyr53pt88i-3 > li{counter-increment:lst-ctn-kix_3vyyr53pt88i-3}ol.lst-kix_h70xyuvb0pq7-1{list-style-type:none}ol.lst-kix_h70xyuvb0pq7-0{list-style-type:none}.lst-kix_ohzxsp1deq34-1 > li{counter-increment:lst-ctn-kix_ohzxsp1deq34-1}.lst-kix_3vyyr53pt88i-4 > li{counter-increment:lst-ctn-kix_3vyyr53pt88i-4}.lst-kix_h70xyuvb0pq7-8 > li{counter-increment:lst-ctn-kix_h70xyuvb0pq7-8}ol.lst-kix_3vyyr53pt88i-8{list-style-type:none}ol.lst-kix_3vyyr53pt88i-7{list-style-type:none}ol.lst-kix_h70xyuvb0pq7-4.start{counter-reset:lst-ctn-kix_h70xyuvb0pq7-4 0}ol.lst-kix_3vyyr53pt88i-0{list-style-type:none}ol.lst-kix_3vyyr53pt88i-2{list-style-type:none}ol.lst-kix_3vyyr53pt88i-1{list-style-type:none}ol.lst-kix_3vyyr53pt88i-2.start{counter-reset:lst-ctn-kix_3vyyr53pt88i-2 0}ol.lst-kix_3vyyr53pt88i-4{list-style-type:none}ol.lst-kix_3vyyr53pt88i-3{list-style-type:none}ol.lst-kix_ohzxsp1deq34-4.start{counter-reset:lst-ctn-kix_ohzxsp1deq34-4 0}ol.lst-kix_3vyyr53pt88i-6{list-style-type:none}ol.lst-kix_3vyyr53pt88i-5{list-style-type:none}ol.lst-kix_h70xyuvb0pq7-5{list-style-type:none}ol.lst-kix_h70xyuvb0pq7-4{list-style-type:none}ol.lst-kix_h70xyuvb0pq7-3{list-style-type:none}ol.lst-kix_h70xyuvb0pq7-2{list-style-type:none}ol.lst-kix_ohzxsp1deq34-1.start{counter-reset:lst-ctn-kix_ohzxsp1deq34-1 0}ol.lst-kix_h70xyuvb0pq7-8{list-style-type:none}ol.lst-kix_h70xyuvb0pq7-7{list-style-type:none}ol.lst-kix_h70xyuvb0pq7-6{list-style-type:none}.lst-kix_h70xyuvb0pq7-0 > li{counter-increment:lst-ctn-kix_h70xyuvb0pq7-0}ol.lst-kix_h70xyuvb0pq7-7.start{counter-reset:lst-ctn-kix_h70xyuvb0pq7-7 0}ol.lst-kix_3vyyr53pt88i-1.start{counter-reset:lst-ctn-kix_3vyyr53pt88i-1 0}ol.lst-kix_ohzxsp1deq34-3.start{counter-reset:lst-ctn-kix_ohzxsp1deq34-3 0}.lst-kix_h70xyuvb0pq7-6 > li{counter-increment:lst-ctn-kix_h70xyuvb0pq7-6}.lst-kix_3vyyr53pt88i-6 > li{counter-increment:lst-ctn-kix_3vyyr53pt88i-6}.lst-kix_3vyyr53pt88i-1 > li{counter-increment:lst-ctn-kix_3vyyr53pt88i-1}.lst-kix_3vyyr53pt88i-7 > li{counter-increment:lst-ctn-kix_3vyyr53pt88i-7}ol.lst-kix_h70xyuvb0pq7-1.start{counter-reset:lst-ctn-kix_h70xyuvb0pq7-1 0}.lst-kix_6atpr0wc9bjy-7 > li:before{content:"- "}.lst-kix_3vyyr53pt88i-0 > li{counter-increment:lst-ctn-kix_3vyyr53pt88i-0}ol.lst-kix_h70xyuvb0pq7-8.start{counter-reset:lst-ctn-kix_h70xyuvb0pq7-8 0}.lst-kix_6atpr0wc9bjy-8 > li:before{content:"- "}.lst-kix_h70xyuvb0pq7-5 > li{counter-increment:lst-ctn-kix_h70xyuvb0pq7-5}ol.lst-kix_3vyyr53pt88i-8.start{counter-reset:lst-ctn-kix_3vyyr53pt88i-8 0}.lst-kix_3vyyr53pt88i-1 > li:before{content:"" counter(lst-ctn-kix_3vyyr53pt88i-1,lower-latin) ". "}.lst-kix_3vyyr53pt88i-2 > li:before{content:"" counter(lst-ctn-kix_3vyyr53pt88i-2,lower-roman) ". "}.lst-kix_ohzxsp1deq34-6 > li{counter-increment:lst-ctn-kix_ohzxsp1deq34-6}.lst-kix_ohzxsp1deq34-0 > li{counter-increment:lst-ctn-kix_ohzxsp1deq34-0}.lst-kix_h70xyuvb0pq7-2 > li{counter-increment:lst-ctn-kix_h70xyuvb0pq7-2}.lst-kix_3vyyr53pt88i-3 > li:before{content:"" counter(lst-ctn-kix_3vyyr53pt88i-3,decimal) ". "}ol.lst-kix_3vyyr53pt88i-7.start{counter-reset:lst-ctn-kix_3vyyr53pt88i-7 0}.lst-kix_3vyyr53pt88i-0 > li:before{content:"" counter(lst-ctn-kix_3vyyr53pt88i-0,decimal) ". "}.lst-kix_3vyyr53pt88i-8 > li:before{content:"" counter(lst-ctn-kix_3vyyr53pt88i-8,lower-roman) ". "}ol.lst-kix_h70xyuvb0pq7-2.start{counter-reset:lst-ctn-kix_h70xyuvb0pq7-2 0}.lst-kix_3vyyr53pt88i-7 > li:before{content:"" counter(lst-ctn-kix_3vyyr53pt88i-7,lower-latin) ". "}.lst-kix_3vyyr53pt88i-5 > li:before{content:"" counter(lst-ctn-kix_3vyyr53pt88i-5,lower-roman) ". "}.lst-kix_3vyyr53pt88i-6 > li:before{content:"" counter(lst-ctn-kix_3vyyr53pt88i-6,decimal) ". "}.lst-kix_3vyyr53pt88i-4 > li:before{content:"" counter(lst-ctn-kix_3vyyr53pt88i-4,lower-latin) ". "}.lst-kix_ohzxsp1deq34-3 > li{counter-increment:lst-ctn-kix_ohzxsp1deq34-3}

3/29/2016Don't forget about the age old question of How can you determine relationships between two variables?

Head start on Project 2

Matlab:

F = at x 1 / (1 + 4*x^ 2)j

N = 10j i = [0:n]j

We also discuss several other topics like What is an organizational cognition?

% equally spaced points

X = -1 + 2* i / nj y = f(x)j nx = length(x)

The basic interpolation is: Lagrange

x

X0 x1 x2

y

Y0 y1 y2

Basic: P(x1) = y1 = f(x1)We also discuss several other topics like Describe the characteristics of a moon jellyfish?
If you want to learn more check out What are unattainable and therefore discouraging to most employees?

Hermite: P(x) = y1 = f(xi) - this will be a higher degree

The hard part is coding the lagrange polynomialsIf you want to learn more check out What were the consequences of a single global economy?

        P(a) = yi Li(a)        li(a) = If you want to learn more check out synaptic knob

% Graphing points

Xx = [-1: 0.01:1]; nxx = length(xx)j

For k = 1:nxx

A = xx (k);

%Good(k) = P(a) = P(xx(k))

Pa = 0;

For i = 1:nx

Ax = a-x;

J = [1:i - 1, i + 1:nx];

Li = prod(ax(j)./(x(i) - x(j)))

Pa = Pa + y(i)*Li

end(k) = Pa;

plot(x,y,’*’,xx,f(xx),’r’,xx,pp,’b’)

Note:

        A =         (x0)then ax = a - x = (a - x0) vector in Matlab

                (x1)                        (a - x1)

                (...)                         (,...    )

  • This is showing that we assume out function approximation will always get better as we increase the degree, but that’s not the case

Part 2 is the same code, but you use Chebyshev nodes (but the part (III) of both of these part 1 and 2 are different

% Chebyshev Nodes

X = cos((2*i + 1)*Pi)/(2*n + 2))i

Note: for n = 10, the function and polynomial look to be about the same

**the way the points are spaced makes a huge difference

For Chebyshev nodes, increasing the n values actually does improve the approximation polynomial

Up to a certain point / number of n then it will diverge from the function

**There may be something wrong with his code, or it’s just the error when you enter n = 1000 for Chebyshev nodes

Most likely it is the error because the polynomial

Error is shown below and it is fine at n = 500

norm(f(x).PP(x))

Example of Hermite Polynomial in book

x

x0

...

xn

y

C10

...

Cn0

y1

C11

...

Cn1

P(x) =C10Ai(x) + Ci1Bi(x)

        Ai(xj) = Fis        Fis = 1 if i = j

        A1(xj) = 0                0 if ij

        B1(xj) = 0

        Bj(xj) = 0

**Note: you do not have to use this form, you can look Lpn easier one online

        Ai(x) = [1 - 2(x - xi)li1(xi)li2(x)

        Bi(x) = (x - xi)li2(x)

How do we get li1(x). Take the derivative of li(x)

Example:

l0(x) =

(x) = [(x - x1) + (x - x2)

X

Y

y1

X0

Y0

yi

X1

Y1

yi

X2

Y2

y2i

3/31/2016

Hermite Polynomial in Matlab

P(x) = yiAi(x) + yi1Bi(x)                li(x) =

Page Expired
5off
It looks like your free minutes have expired! Lucky for you we have all the content you need, just sign up here