New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Biology 1060 Exam 3 Study Guide

by: Margaret Notetaker

Biology 1060 Exam 3 Study Guide Bio 1060

Marketplace > Saint Louis University > Biology > Bio 1060 > Biology 1060 Exam 3 Study Guide
Margaret Notetaker

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

This is the consolidated study guide for all of Biology 1060 (General Biology II) Unit 3: Plants. It includes notes from every lecture class except the last two days.
General Biology II
Dr. Thole
Study Guide
Biology, plants, Photoperiodism, flowers
50 ?




Popular in General Biology II

Popular in Biology

This 19 page Study Guide was uploaded by Margaret Notetaker on Tuesday April 5, 2016. The Study Guide belongs to Bio 1060 at Saint Louis University taught by Dr. Thole in Spring 2016. Since its upload, it has received 227 views. For similar materials see General Biology II in Biology at Saint Louis University.


Reviews for Biology 1060 Exam 3 Study Guide


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 04/05/16
Margaret  S   Biology  1060  (General  Biology  II)  Exam  3  (Plants)  Study  Guide   Exam  3  is  on  Friday,  April  8 ,  2016   This  Guide  covers  everything  except  the  last  2  days  of  class.       Things  To  Know:   The  Difference  Between  Plant  and  Animal  Cells   • Plant  cells  have:  cell  walls,  large  vacuoles  for  water  storage,   chloroplasts,  no  ability  for  movement,  plasmodesmata  connecting   cells,  and  are  photoautotrophs  (make  their  own  food  from  the   sun),  and  animal  cells  don’t  have  these  things   • Plants  undergo  plastic  development  (are  constantly  regenerating   their  own  organs)   • Plants  and  animals  are  both  organized  cellsàtissuesàorgans     Basic  Plant  Evolution   •     All  of  the  Following  (Until  Future  Notice)  Is  In  Reference  to   Vascular  Plants:   Plant  Structure:   • Shoots:  above-­‐ground   o Stem   o Leaves   o Flowers   • Roots:  below-­‐ground   • Apices  exist  at  the  tip  of  roots  and  shoots     Meristems:   • Plant  stem  cells   o Always  dividing   o Totipotent  (can  give  rise  to  any  cell  because  they  are   undifferentiated)   o Responsible  for  primary  growth   • Found  at  apex  of  shoot  and  root     Cell  Types:   • Parenchyma  Cells   o Responsible  for  primary  walls  (thin,  non-­‐lignified)   § Lignin  makes  cells  more  rigid  and  aggregates  in  the   secondary  cell  wall  (within  the  primary  cell  wall)   o Always  alive  at  maturity   o Totipotent   o Photosynthesis  and  gas  exchange  (make  up  stomata)   o Make  up  phloem   • Collenchyma  Cells  (not  present  in  all  plants)   o Uneven,  non-­‐lignified  cell  walls   o Function  as  support  for  young  plant  organs  (celery  strings)   • Sclerenchyma  Cells:   o Primary  and  lignified  secondary  cell  walls   o Often  dead  at  maturity   o Consist  of  fibers  (which  contain  secondary  cell  walls  of   lignin),  sclereids  (ex.  grainy  cells  in  pears),  and  xylem   (tracheids  and  vessels  that  move  water)     Tissue  Types:   • Dermal  Tissue:  “skin”  of  plant,  covers  surface  area  of  leaves   o Parenchyma  cells   o Epidermis  is  usually  1  cell  thick   o Often  has  outer  cuticle  of  wax  to  retain  water   o Includes  stomata  (guard  cells)  which  facilitate  gas  exchange   and  minimize  water  loss,  trichomes  which  protect  the  plant   and  minimize  water  loss  as  well  as  produce  smells,  and   roots/root  hairs  which  absorb  water   • Vascular  Tissue:  circulatory  system  of  plant,  exists  in  the  form  of   veins  that  are  visible  in  leaves  and  are  made  up  of  xylem  and   phloem   o Xylem  (sclerenchyma  cells)  and  phloem  (parenchyma  cells)   o Xylem  and  phloem  are  veins  in  leaves   o Xylem  transports  water  and  minerals  upwards  only,  and  are   dead  at  maturity  to  facilitate  osmosis/diffusion   § Xylem  cells  have  lignified  cell  walls   o Phloem  transports  food  (glucose)  up  and  down  plant,  and   cells  are  alive  at  maturity   • Ground  Tissue:  everything  besides  skin  and  circulatory  system   o Parenchyma,  sclerenchyma,  and  collenchyma  cells   o Makes  up  most  of  plant  body     Plant  Organs  (Non-­‐Reproductive):  must  be  plastic  (constantly   regenerating)  because  plants  can’t  move  away  from   danger/towards  favorable  conditions!   • Leaves   o Undergo  photosynthesis  (absorb  sun’s  rays,  contain   chloroplasts)     o Evolved  to  achieve  maximum  photosynthetic  capacity   (started  as  photosynthetic  stems  which  lost  their  apical   meristems)   o Stem  of  the  leaf  is  called  petiole   o Contain  veins  as  vascular  tissue  which  allows  water  to  leave   via  transpiration  and  carbs  from  photosynthesis  to  go  to  the   rest  of  the  plant   o Eudicots  have  net-­‐like  veins,  monocots  have  parallel  veins   o Simple  leaves  are  a  blade  and  petiole,  but  compound  leaves   have  leaflets,  and  needle  leaves  (ex.  Pines)  are  neither   simple  or  compound   o Various  modified  leaves  have  specific  other  functions   (protection,  storage,  pollinator  attraction,  etc.)   • Stems   o Support  plant  and  transport  nutrients  and  water   o Are  mostly  made  of  shoots  and  leaves  (and  flowers  but  that   comes  later):   § Shoots  are  made  of  nodes  and  internodes:  nodes  are   the  portion  of  the  stem  that  contains  leaves  and   axillary  buds  (axillary  buds  are  backup  meristems   located  just  above  each  leaf  branch  along  the  stem,   they  allow  for  branching  in  seed  plants);  internodes   are  the  portion  of  stem  between  leaves   o Shoots  from  the  top  down:   § The  tip:  just  meristem   § Just  Under:  meristem  and  procambium   § Just  Under:  pith  and  primary  xylem   § Just  Under:  Secondary  xylem,  pith,  primary  xylem   § Some  plants  have  wood  under  this,  but  some  don’t   (they  are  herbaceous)   o Have  special  leaf  organization  that  allows  for  different   optimal  leaf  arrangements  for  each  plant  species   o 3  Zones:  Division,  Elongation,  Maturation   § Zone  of  Division:  apical  meristem  (tip  of  shoot)   § Zone  of  Elongation:  just  below  meristem,  cells  get   longer   § Zone  of  Maturation:  lowest  part  of  plant,  contains   fully  grown  and  differentiated  cells   o Conduction  (movement  of  water,  minerals,  and  food)  is   from  source  (production  site)  to  sink  (usage  site)   o Stems  have  vascular  tissue  in  bundles   § Monocot  stems  have  randomly  scattered  vascular   bundles   § Eudicot  stems  have  vascular  bundles  arranged  in  a   ring  around  internal  ring  of  ground  tissue  (pith),  they   also  have  small  extra  layer  between  xylem  and   phloem  called  vascular  cambium  which  makes  more   xylem  and  phloem  when  the  stem  grows  wider   § Both  types  of  stems  have  xylem  towards  center  of   stem  in  each  bundle  and  phloem  towards  the  outside   of  the  stem   o Apical  meristem  =  primary  growth  (getting  taller)   o Lateral  meristems  =  secondary  growth  (all  other  kinds),   there  are  2  types  of  lateral  meristems:   § Vascular  cambium:  only  in  eudicots,  makes  more   vascular  tissue  (in  trees,  this  is  right  under  the  wood)   § Cork  cambium  makes  bark  around  outside  of  stem  in   some  plants  (trees)   o Wood  is  excess  secondary  xylem  produced  by  the  vascular   cambium,  which  also  produces  secondary  phloem   o   o Rings  within  trees  are  dependent  on  water  availability,  they   will  be  wider  with  more  of  it   § Narrow  ring  =  slow  growth,  usually  in  the  center,   heartwood   § Wide  ring  =  fast  growth,  usually  in  the  outer  layers,   supwood   • Roots   o Root  meristems  have  protective  layers  called  root  caps  (are   bottom  tip  of  root)  that  are  necessary  for  the  root  to  grow   o Root  meristems  are  zones  of  cell  division,  and  there  are   zones  of  elongation  and  maturation  as  you  work  your  way   up  just  like  shoots,  but  in  reverse   o 2  types  of  roots:   § Tap  roots:  1  clear  main  root   § Fibrous  roots:  no  clear  main  root   o Endodermis  of  roots  surrounds  dermal  tissues  (Suberin  on   endodermis  makes  up  outer  layer  called  Casparian  strip,   which  is  watertight)   § Xylem  and  phloem  in  roots  are  not  arranged  in   bundles   § Vascular  system  here  is  enclosed  in  the  stele  of  the   root,  which  is  surrounded  by  the  cortex   § Monocots  have  an  extra  layer  of  pith  in  the  middle  of   the  root   § No  vascular  cambium  in  roots   § New  root  apical  meristems  form  from  the  pericycle   (just  within  the  vascular  tissue)   o Roots  do  not  undergo  secondary  growth  (don’t  get  wider)     Roots  vs.  Shoots:   • Size   o Roots:  relatively  large   o Shoots:  relatively  large   • Protection  to  meristem   o Roots:  root  cap   o Shoots:  none   • Lateral  organs   o Roots:  lateral  roots   o Shoots:  leaves  and  branches   • Primary  growth   o Roots:  yes:  apical  meristem   o Shoots:  yes:  apical  meristem   • Secondary  growth   o Roots:  none   o Shoots:  yes  in  eudicots   • Branching   o Roots:  present   o Shoots:  present     Seeds:   • The  endosperm  provides  nutrients  to  the  developing  inner   embryo   • In  monocots,  the  majority  of  the  seed  is  endosperm   • Main  difference  between  mono/eudicots:   o Monocots  have  1  cotyledon  (miniature  leaflet  inside   embryo)   o Eudicots  have  2  cotyledon   • Embryogenesis  determines  axes  and  all  3  tissue  layers  of  plant   •   • Seeds  are  crucial  to  land  adaptations:  for  protection,  dormancy  in   unfavorable  conditions,  providing  food,  and  embryo  dispersal   • Seeds  germinate  based  on  environmental  cues  like  light,   temperature,  and  moisture     Vascular  Transport   • Transpiration  means  that  water/sugars  move  towards  parts  of   the  plant  with  more  negative  potentials  (or  lower  water   potentials)   • All  water  transport  is  passive  (diffusion  or  osmosis)   • ΨW + ΨS + ΨP + ΨG = Ψ   o ΨW is  water  potential   o ΨS  is  solute  potential,  which  is  always  negative   o ΨP  is  pressure  potential,  which  is  always  positive   o ΨG is  the  pressure  from  gravity,  but  is  mostly  neglected   because  it  only  has  an  effect  in  very  tall  trees   o The  units  for  Ψ are  MPa   • Turgor  pressure  helps  the  plant  withstand  gravity  (cell  wall   pushes  on  the  outer  membrane),  turgor  pressure  always  positive   o Flaccid  cell  lacks  turgor  pressure,  when  plants  aren’t   watered  this  leads  to  drooping   • Hypertonic  solution:  has  a  greater  concentration  of  solutes   than  the  inside  of  the  cell,  so  water  will  flow  out  of  the  cell   • Hypotonic  solution:  has  a  lesser  concentration  of  solutes  than   the  inside  of  the  cell,  so  water  will  flow  into  the  cell  and  the  cell   may  eventually  lyse  (burst)   • Isotonic  solution:  there  are  equal  concentrations  of  solute  on  the   inside  and  outside  of  the  cell,  so  there  is  no  net  movement  of   water   • Pure  Water   Flaccid  Cell       Pure  Water   Turgid  Cell   Ψ =  0.0  MPa   ΨP =  0.0  MPa       Ψ =  0.0  MPa   ΨP  =  1.0  MPa   ΨS =  -­‐1.0  MPa           ΨS  =  -­‐1.0   MPa   Ψ =  -­‐1.0  MPa           Ψ =  0.0  MPa   Water  goes  into  the  cell  (hypotonic)   No  net  movement  of  water   In  these  solutions,  animal  cells  burst,  but       (isotonic)   plant  cells  don’t  because  of  their  rigid  cell   walls;  eventually  the  imbalanced  turgor   pressure  will  cause  osmosis  to  even  it  out     • Solution     Cell   ΨS =  -­‐0.7  MPa     ΨS  =  -­‐0.2  MPa   ΨP =  0.0  MPa     ΨP =  0.5  MPa   Ψ =  -­‐0.7  MPa     Ψ =  0.3  MPa   Water  flows  out  of  the  cell  in  this  case,  because  the  water  will  always  flow  to   the  area  with  the  lower  potential,  in  this  case,  the  solution.  The  cell   membrane  might  eventually  undergo  plasmolysis  (the  membrane  on  the   inside  shrinks  away  from  the  outer  cell  wall).  This  is  an  example  of  a   hypertonic  solution,  because  water  flows  out  of  the  cell  (ignore  the  negatives   and  just  pay  attention  to  where  the  water  flows  for  these  problems).   • After  equilibrium  is  achieved  (isotonicity),  ΨW  of  the  cell  =  ΨW of   the  solution,  so  in  the  example  above,  at  equilibrium,  both  the  Ψ of  the  cell  and  the  solution  will  be  -­‐0.7  MPa.   • Pressure  potentials  (  ΨP )  are  always  positive,  as  noted  above   • Water  potential  is  measured  for  individual  cells,  tissues,  root  and   shoot  systems,  and  entire  plants     Plants  Need  Water,  CO2,  Elements,  and  Essential  Nutrients  From   Soil   • Essential  nutrients  are  required  for  a  specific  structure/function   necessary  for  normal  growth  and  development   o Macronutrients  are  needed  in  large  quantities ;  are  building   blocks  of  key  molecules   o Micronutrients  are  needed  in  small  quantities;  function  as   cofactors  for  specific  plant  enzymes   • Water  carries  nutrients  into  roots  indirectly  through  uptake   regulated  by  endodermis   o Endodermis  is  right  under  root  surface  and  contains   aquaporins  and  ATP,  prevents  water  leakage   • Proton  pump  in  roots  moves  protons  to  outside  to  allow   negatively  charged  nutrients  in  (secondary  active  transport)   • Carnivorous  plants  trap  and  digest  insects  to  get  nutrients   • Parasitic  plants  get  nutrients  from  other  plants   • Mycorrhizal  associations  are  mutualistic  relationships  between   plant  roots  and  soil  fungi;  they  increase  nutrient  availability  for   plants   • Nitrogen-­‐fixing  bacteria  also  help  plants  obtain  nitrogen,  some   species  of  plant  have  nodules  to  house  the  bacteria  in  their  roots     More  Stuff  About  Vascular  Tissues   • Phloem  are  alive  and  contain  sieve  tubes  and  companion  cells   o Sieve  tubes  are  phloem  and  are  made  of  conducting  cells   (parenchyma)   o Companion  cells  maintain,  load,  and  unload  sugar  into  and   out  of  sieve  tubes   • Phloem  sourceàsink  is  food  moving  from  leaves  or  storage  roots   to  other  parts  of  the  plant   • In  xylem,  water  enters  roots,  travels  up  and  leaves  through  leaf   stomata   • In  phloem,  minerals  enter  through  roots,  carbs  from   photosynthesis/water  move  up  and  down  the  plant   • Translocation:  movement  of  sugars  through  phloem  (stem/grown   leavesàroots,  flowers,  and  baby  leaves)   • Radioactive  CO2  watching  shows  it  moving  to  younger  leaves   • Phloem  transport  of  sugar  includes  active  and  passive  steps:   o Active:  loading/unloading  of  sugar  created  via   photosynthesis  in  mesophyll  cells  around  the  phloem,   proton  ATPase  helps  secondary  active  transport  (protons   move  in  to  cells  to  provide  energy)   o Pressure-­‐Flow  Hypothesis  (passive):  sugar  transport  is   driven  by  a  difference  in  pressure  potential  (ΨP); water   flows  into  the  phloem  from  the  xylem,  it  will  always  flow   from  an  area  of  high  ΨP (source)  to  an  area  of  low  ΨP (sink);  pressure  is  what  governs  the  sourceàsink   movement  and  the  bulk  flow  of  sugar  (driven  by  pressure)   is  passive   • Xylem  vs.  Phloem:   o Xylem:  water  moves  to  lower  potential,  always  passive   o Phloem:  sugar  moves  to  lower  potential,  active  and  passive   o Phloem  contains  amino/organic  acids,  protein,  hormones,   RNA,  and  ions  in  addition  to  sugar     Plant  Hormones   • ABA:  helps  maintain  dormancy  in  seeds  as  well  as  stomatal   closure  during  times  of  drought  (it  is  a  stress  hormone)   • Auxin  (IAA:  Influences  Almost  Anything):   o 1  plant  hormone  discovered   o Principle  production  sites  are  shoot  apical  meristems,   young  leaves,  and  developing  fruits  and  seeds   o Auxin  is  transported  to  roots,  where  it  undergoes  polar   transport  to  develop  cells  that  will  become  vascular  tissue   o Auxin  causes  apical  dominance  (when  the  apical  meristem   is  attached,  it  is  the  only  meristem  that  will  grow,  but  when   the  apical  meristem  is  removed,  axillary  buds  start   developing)   o Auxin  suppresses  growth  of  axillary  buds  by  inhibiting   synthesis  of  cytokinin   o Roots  have  a  lot  of  auxin,  shoots  have  a  little  auxin  but  a  lot   of  cytokinin   • Ethylene:  gaseous,  allows  fruit  to  ripen   • Gibberellins:  control  stem  elongation   • Cytokinin:  promote  cell  division     Perception  Process:   • 1  Step:  Receptor  cells  (could  be  photoreceptors,   mechanoreceptors,  or  chemical  receptors)  perceive  an  external   stimulus  (could  be  light,  gravity,  touch,  etc.)  and  transduces  the   information  to  an  internal  signal   • 2  Step:  Hormone  travels  throughout  the  plant  after  being   released  by  the  receptor  cell   • 3  Step:  The  receptor  cell  receives  the  signal,  transduces  it  to  an   internal  signal,  and  changes  its  activity  according  to  that  signal     Tropisms   • Tropisms  are  growth  responses  involving  bending  towards/away   from  a  stimulus   o Negative  tropism:  movement  away  from  stimulus   o Positive  tropism:  movement  toward  stimulus   • Types  of  tropisms:   o Phototropism  (growth  towards  light)   § Plants  do  this  thanks  to  auxin,  which  aggragates  on  a   shaded  side  of  the  plant  and  causes  elongation,  which   bends  the  plant  overall  towards  the  light   § Darwin  did  a  famous  experiment  with  a  foil  cap  over  a   plant  tip,  Went  did  the  second  that  officially  proved   auxin’s  existence   §   o Gravitropism  (growth  in  response  to  gravity)   § Roots  have  positive  gravitropism  (grow  down)   § Shoots  have  negative  gravitropism  (grow  up)   § Gravity-­‐sensing  organelles  called  amyloplasts  are   found  in  root  caps,  and  when  the  plant  is  tilted,  they   shift  and  auxin  is  transported  to  the  downwards  side,   where  the  concentration  is  so  high  it    inhibits  cell   growth,  leading  to  an  overall  downward  growth   §   o Thigmotropism  (growth  in  response  to  touch)   § The  cells  in  contact  with  the  stimulus  grow  faster  than   the  ones  that  aren’t   § Tendril  coiling  is  caused  by  this   § Sensitive  plant  is  a  specific  type  that  reacts   dramatically  by  closing  its  leaves  in  response  to   touch;  this  is  possible  due  to  rapid  changes  in  turgor   pressure     When  Plants  Grow:   • Plants  have  Circadian  Rhythms  just  like  people   o Constans  (CO)  is  a  gene  that  depends  on  a  24  hour  time   scale,  works  together  with  light  to  produce  flowers   • Plants  bend  toward  blue  light  (white  light  contains  blue  light)   because  a  photoreceptor  called  phototropin  absorbs  it   • Phytochrome  is  a  hugely  important  photoreceptor  with  2  forms:   o Pr:  dormant  form:  absorbs  red  light,  changes  to  Pfr  in  red   light   o Pfr:  active  form,  absorbs  far  red  light,  changes  to  Pr  in  far   red  light   § Can  enter  the  nucleus  to  express  certain  genes   •   o If  there  is  more  far  red  light  absorbed,  phytochrome  kicks  in   and  stimulates  continued  growth  upwards   o If  there  is  more  red  light  absorbed,  the  plant  grows  on  its   own  without  needing  to  elongate  incessantly  in  search  for   red  light   • Because  of  all  this,  plants  kept  in  the  light  have  shorter  stems  and   more  optimally  placed  leaves,  while  plants  in  the  shade  elongate   more  and  as  a  result  have  longer,  thinner  internodes  (portion  of   the  stem  between  leaves)  as  well  as  fewer  leaves   • In  the  understory  of  the  rainforest,  10%  of  plants  are  exhibiting   Pfr  (active  form)  while  in  an  open  environment,  60%  of  plants  will   be  exhibiting  Pfr  (active  form)   • Important  to  remember:   o Lots  of  light  =  red  light  =  plant  will  absorb  all  red  photons   and  grow  normally,  bending  towards  this  light   o Shade  =  far  red  light  =  the  plant  will  absorb  photons  that   above  plants  don’t  absorb  (not  optimal  for  photosynthesis   like  red  light  is),  and  this  plant  will  elongate  more  in  search   of  light   • An  experiment  showed  that  whatever  light  a  seed  is  most  recently   exposed  to  has  the  greatest  effect  on  germination:   o If  seeds  are  more  recently  exposed  to  red  light,  almost  all   will  germinate   o If  seeds  are  more  recently  exposed  to  far  red  light,  only   about  50%  of  them  will  germinate   o This  process  is  called  photoreversibility:  the  expression  of   the  genes  Pr  and  Pfr  can  be  influenced/reversed  by  light     When  Plants  Flower:   • Flowers  are  adult  plant  reproductive  structures,  flowering   depends  on  light  cues   o Cues  include:  day  length  and  vernalization   • Vernalization:  cold  treatments  that  either  are  or  stimulate  winter   cause  plants  to  flower,  and  without  a  cold  treatment  these  plants   will  continue  preparing  for  winter  and  never  flower   o   o In  this  diagram,  the  plant  on  the  left  has  not  experienced  a   cold  treatment  and  is  producing  flowers  to  prepare  for   winter,  while  the  plant  on  the  right  has  experienced  a  cold   treatment  which  is  why  it  is  elongating  and  flowering   o Flowering  Locus  C  (FLC)  is  a  floral  repressor  gene  that   turns  off  after  vernalization  via  epigenetic  regulation   § Plants  that  haven’t  seen  winter  have  no  repression   of  FLC  (which  represses  flowering),  and  so  they  do   not  flower   § Plants  that  have  seen  winter  have  mechanisms  in   place  to  repress  FLC  and  flowering  occurs   § This  happens  because  chromatin  is  remodeled  after   the  first  winter,  and  FLC  is  always  repressed  after  that   • Photoperiodism:  the  ability  of  an  organism  to  detect  day  length   o Long  day  plants:  flowering  is  only  promoted  when  day   length  exceeds  a  certain  duration  in  a  24  hour  cycle;  these   plants  often  flower  in  spring  and  early  summer   o Short  day  plants:  flowering  requires  day  length  that  is  less   than  the  critical  length;  these  plants  often  flower  in  late   summer  and  early  fall   o Day-­‐neutral  plants  use  other  indicators  besides  day  length   to  regulate  flowering   o Leaves  perceive  photoperiodism  signal  by  measuring  length   of  night   § In  the  laboratory:  even  a  quick  flash  of  light  in  the   middle  of  the  stimulated  “night”  can  cause  short  day   plants  not  to  flower  in  otherwise  short  day  conditions   § The  quick  flash  of  light  can  also  cause  long  day  plants   to  flower  in  short  day  conditions  (it  all  depends  on  the   continuous  length  of  the  night)   Reproduction   • Angiosperms  are  flowering  plants,  and  therefore  undergo  sexual   reproduction   • All  flowers  are  made  up  of  4  parts:  sepals,  petals,  stamen,  and   carpels   o Stamen  is  made  of  an  anthers  and  filaments   o Carpels  have  3  parts:  stigma  (the  tip  of  the  carpel),  style   (provides  transport  from  stigma  to  ovary),  and  ovary   (contains  ovules)   •   • Some  plants  pollinate  themselves,  but  most  rely  on  wind  or   pollinators  to  do  it  for  them;  ones  that  rely  on  pollinators  are   brighter   • General  flower  characteristics:   o A  complete  flower  has  all  4  whorls  (sepal,  petals,  stamen,   carpels)   o A  perfect  flower  has  both  male  and  female  parts   o Imperfect  flowers  have  either  only  male  or  only  female   parts   o A  flower  can  be  any  combination  of  complete/incomplete   and  perfect/imperfect,  except  imperfect  and  complete   o Monoecious:  one  plant  has  both  male  and  female  flowers   (this  plant  would  be  incomplete  and  imperfect)   o Dioecious:  one  plant  has  either  all  male  or  all  female   flowers  (still  incomplete  and  imperfect)     Angiosperm  Life  Cycle   • Pollination:  movement  of  pollen  from  the  anther  to  the  stigma   o Pollination  is  any  mechanism  where  pollen  travels  to  where   it  needs  to  be  to  fertilize   o Pollen  lands  on  the  stigma,  then  stimulates  the  growth  of   pollen  tubes  through  the  style  (2  for  each  style)   • Self-­‐Pollination:  plant’s  own  pollen  lands  on  its  stigma  (usually   plants  that  do  this  have  some  evolutionary  need  to  keep  their   genes  as  they  already  are)   • Cross-­‐Pollination:  pollen  from  one  flower  lands  on  the  stigma  of   a  different  flower  (outcrossing),  these  plants  reproduce  this  way   because  they  need  greater  genetic  diversity   • Fertilization:  fusion  of  haploid  gametes,  next  step  after   pollination   • Pollen  moves  via   o Wind   o Insects   o Bees/Birds   o Other  Animals   o All  of  these  except  wind  are  pollinators,  which  put  pollen  on   their  bodies  and  transport  it  to  the  next  plant   • Angiosperms  are  highly  dependent  on  pollinators,  of  which  bees   are  the  biggest  group   o Butterflies  pollinate  red/orange  flowers  with  tubes   underneath  that  hold  nectar  (they  are  attracted  to  those   because  they  drink  nectar  with  long  tongues)   o Birds  like  tubule  flowers  too   o Some  flowers  smell  like  rotting  meat  to  attract  flies   o Bats  pollinate  flowers  that  flower  at  night  with  strong  odors   to  help  the  bats  find  them   • Bees:   o Typically  pollinate  yellow  or  blue  flowers,  and  many  have   stripes  or  lines  of  dots  that  indicate  the  location  of  nectar   like  a  bullseye  for  bees   • Sometimes  plants  evolve  to  look/smell  like  the  female  of  an  insect   species;  this  is  an  example  of  extreme  coevolution   • Fig  wasp  pollination:  another  very  specific  example  of  coevolution   • Details  of  fertilization/pollination:   o Pollen  grain  lands  on  the  stigma  of  carpel   o The  pollen  must  germinate  and  grow  tubes  through  the   style  and  into  the  ovary   o Pollen  sperm  travels  down  to  fuse  with  the  ovule   o After  fertilization,  most  angiosperms’  ovaries  develop  into   fruit   • Double  Fertilization:   o Gametophyte:  haploid  female  gametophytes  have  8  cells:   one  is  the  egg  to  be  fertilized,  2  others  fuse  to  form  a  diploid   central  cell  (in  the  diagram  below,  they  are  shown  in  step  1   unfused  and  called  “polar  nuclei”)   o Male  gametophytes  have  3  cells:  1  is  generative  (produces   ATP  to  fuel  the  growth  of  the  pollen  tube),  the  other  2  cells   carry  out  both  of  the  fertilization  steps:  1  fertilizes  the  egg   (ovule)  to  become  a  diploid  (2n)  zygote  and  the  other   fertilizes  the  central  cell  to  become  a  3n  endosperm   •   • Post-­‐fertilization:  1)  zygote  divides  mitotically  to  be  an  embryo,  2)   the  triploid  central  cell  divides  mitotically  to  become  an   endosperm,  3)  the  ovule  becomes  a  seed  with  a  tough  coat,  and  4)   the  ovary  wall  develops  into  fruit   o The  endosperm  provides  nutrients  to  the  developing   embryo   • During  embryogenesis,  3  other  major  events  happen  for   angiosperms:   o Development  of  a  food  supply   o Development  of  a  seed  coat   o Development  of  fruit  surrounding  seed   • As  the  fertilized  egg  becomes  an  embryo,  the  ovary  wall  becomes   a  fruit   • The  number  of  carpels  a  flower  originally  had  is  revealed  in  the   cross  section  of  a  fully  developed  fruit   • Fruits  have  extreme  diversity  (for  example  where  the  seeds  are)    


Buy Material

Are you sure you want to buy this material for

50 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Jennifer McGill UCSF Med School

"Selling my MCAT study guides and notes has been a great source of side revenue while I'm in school. Some months I'm making over $500! Plus, it makes me happy knowing that I'm helping future med students with their MCAT."

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.