New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

EVE 12: Life in the Sea

by: AlexandraRita Notetaker

EVE 12: Life in the Sea EVE 012

AlexandraRita Notetaker
GPA 4.2

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Week 2 Notes from tuesdays and thursdays lecture. I will post new notes every thrusday and provide study guides for the upcoming quiz.
Life in The Sea
Susan Williams
Class Notes
EVE 12, Life in the Sea, notes, important, popular, Science, Biology, marine biology, Sea life, Marine, UC Davis, Davis
25 ?




Popular in Life in The Sea

Popular in Business

This 14 page Class Notes was uploaded by AlexandraRita Notetaker on Thursday April 7, 2016. The Class Notes belongs to EVE 012 at University of California - Davis taught by Susan Williams in Spring 2016. Since its upload, it has received 42 views. For similar materials see Life in The Sea in Business at University of California - Davis.


Reviews for EVE 12: Life in the Sea


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 04/07/16
  th Day  3  (April  5 )  Sex  in  the  Sea     Sex  in  the  Sea   Reproduction  Titles   •   Sponges  (Porifera)   •   Asexual  (budding,  cloning)   •   Sexual  (gametes/Eggs  and  or  sperm)     Broadcast  Spawning:  leaving  it  to  chance   Hermaphrodite  (Both  Male  and  female  parts)  :  doubling  down   simultaneous  hermaphrodite   Sea  stars,  sea  urchins,  sea  cucumbers  (Echinodermata)   -­‐Larvae  spontaneously  clone  (exact  match)   -­‐Discovered  in  2003   -­‐Increased  probability  of  surviving  in  the  plankton             Coral  Reproduction  –  Mass  Spawning   -­‐simultaneous  hermaphrodites   1.complex  life  histories  (planula  larva)   2.  internal  fertilization  -­‐  larva  released     Ex.  Komodo  Dragon  (  a  lot  of  energy  and  risks  to  mate)   3.  external  fertilization  –  (Water  mixes  up  egg  and  sperm)  parent   releases  egg-­‐  sperm  packets     Mass  Spawning   -­‐simultaneous  release  of  gametes  type  of  broadcast  spawning   -­‐up  to  32  species  in  a  single  night     Sex  in  the  sea  –  risky  business   Barnacles  (Crustacea)  -­‐  hermaphrodites  sessile-­‐  immobile,  attached  to   bottom     Dark  abyss   Reproductive  challenges  Deep-­‐sea  angler  fish-­‐  male  parasitizes  female     Sexual  Dimorphism   Male  and  Female  do  not  look  a  like  (Cannot  tell  one  from  the  other)     The  female  is  60X  longer  and  500,000  heavier     Simple  vs.  Complex  Life  Histories   Simple:   no  metamorphosis  no  larval   sharks  sea  turtles  seahorses     Growth  and  development     Reproduction
(internal  fertilization  in   humans)   2           Complex:  Several  stages  from  birth  to  death   >1  stage   -­‐larvae  (microscopic  planktonic  stages)   -­‐cast  adrift  metamorphosis   -­‐settlement  into  adult  habitat  (‘recruitment’)               Many  seaweeds  have  complex  life   histories   •   Kelp  have  a  complex  life  history  with  two   stages,  each  with  a  different   morphology.   •   The  sporophyte  produces  spores   that  settle  into  microscopic   gametophytes,  which  produce   gametes.           3     ‘Typical’  red  (Rhodophyta)   seaweed  life  history  3   phases:
2  produce  spores
1   produces  gametes     Seaweed  Perfume       -­‐sperm  attractant  kelp  and  other  brown  seaweeds   -­‐The  female  seaweed  produces  volatile  compounds  that  attract   sperm.
   -­‐Pheromones  are  small   organic  compounds  that   direct  behavior.
                   4       Brooding     -­‐Caring  for  offspring     Pre-­‐spawning  aggregation  ‘pseudocopulation’   -­‐Leptasterias   -­‐Male  deposits  sperm  on  rock   -­‐Female  ‘pinwheels’  over  sperm,  releases  eggs     Brooding  by  male  seahorses   -­‐Simple  life  history   -­‐Courtship  Eggs  extruded  and  mixed  with   -­‐sperm  Mixture  enters  brood  pouch     Quality  vs.  Quantity   Two  different  reproduction  strategies   -­‐Large  investment  brooding                                                                     -­‐fewer  offspring  larger   -­‐Small  investment  broadcasting                                                        -­‐numerous  offspring  smaller     Sequential  hermaphroditism     -­‐Gender  switch  during  life  history   -­‐Anemonefishes:  members  of  the  damselfish  family   -­‐fish-­‐anemone  commensalism   -­‐born  as  males   -­‐strict  dominance  hierarchy  within  anemone  one  dominant  breeding  female   nest  guarding  by  males     Types  of  Anemones  Fish   1.  false  clownfish  (‘Nemo’)  Amphiprion  ocellaris   2.  Clark’s  anemonefish,  Amphirion  clarkii     3.  tomato  anemonefish,  Amphiprion  frenatus           5       Serial  hermaphroditism  and  harems  Parrotfishes   Bicolor  parrotfish  female  Cetoscarus  ocellatus   -­‐intermediate  phase  female   -­‐terminal  phase  male     Sequential  hermaphroditism  male  to  female   slipper  shell,  fornicating  slipper  shell   Crepidula  fornicata   settle  as  males           female  on  bottom           Coastal  fishes  show  abnormal  sex  reversal   ‘feminization’  of  males  disruption  of  the  normal  sex  hormones   ‘endocrine  disruption’   Suspected/proven  endocrine  disrupters  include:   •    Pharmaceuticals  and  personal  care  products  (birth  control  pill)   •    Sewage  effluent   •    Industrial  chemicals   (plasticizers)  •    Pesticides   •    Many  unidentified  chemicals     Life  history  changes  in  color,  Behavior   nuptial  coloration   green  chromis  (Chromis  viridis;  damselfish)       6         Summary  Sex  in  the  Sea   •    successful  reproduction  is  achieved  in  highly  diverse  ways   -­‐    cloning  (non-­‐sexual)   -­‐    internal  vs.  external  fertilization   -­‐    broadcast  spawning  vs.  brooding  -­‐    hermaphrotidism   •    complex  life  histories  are  common     End  of  Day  3  Notes                                                     7       Day  4  Notes  (April  7 )   th   Phytoplankton  and  Seaweeds   Common  names  for  diverse  groups  of  marine  photosynthetic  organisms   Photosynthesis   -­‐  light  energy  is  used  to  produce  organic  matter  Primary  producers   •    Produce  organic  matter   •    Food  for  herbivores   •    Are  at  the  base  of  many  marine  food  webs     Phytoplankton  and  Seaweeds   -­‐Algae:  describes  photosynthetic  aquatic  organisms  that  lack  true   leaves  and  roots  and  do  not  flower  to  reproduce.   -­‐Phytoplankton:  microscopic  single-­‐celled  algae  that  float  in  the   pelagic  zone.   -­‐Seaweed:  Multi-­‐celled  marine  alga  that  live  in  the  coastal  intertidal   and  subtidal  zone,  typically  attached  typically  to  bottom   •   Alga  (singular);  Algae  (plural)     Marine  Primary  Production   -­‐Primary  production:  the  transformation  of  inorganic  molecules   (carbon  dioxide  and  water)  into  organic  molecules  (sugars).   •   Primary  production-­‐  provides  the  energy  and  matter  for  food   webs.   Photosynthesis  is  the  dominant  mode  of  marine  primary  production,  except   where??   •   Phytoplankton  and  seaweeds  are  important  marine  primary   producers.               8       Global  Ocean  Primary  Production   •   55%  of  total  primary  production  on  earth  occurs  in  the  ocean.   Distribution  and  rates  of  primary  production  in  the  ocean:     -­‐Upwelling  regions  are  the  most  productive  ocean  environments,  but   cover  little  area  of  the  ocean.     California  Coastal   Upwelling  Ecosystem   -­‐one  of  four  on  earth   Upwelling  ecosystems   -­‐highly  productive   •   Upwelling:  Cold,  nutrient-­‐rich  water  rises  from  deep  to   replace  surface  waters.   •   Winds  and  rotation  of  earth  ‘pull’  surface  waters  away  from   land.     Upwelling  regions  support  high  phytoplankton  primary  production   •   Sea  surface  temperature  (SST)  detected  by  satellite  sensors   •   Cold  surface  waters  along  the  west  coasts  of  continents  indicate   an  upwelling     California  Coastal  Upwelling  Ecosystem   -­‐High  nutrient  concentrations  in  cold  waters  ‘fertilize’  phytoplankton.   Satellite  chlorophyll  sensors   -­‐  more  phytoplankton  higher  chlorophyll  levels  higher  primary   production     9       Phytoplankton   -­‐  a  mixed-­‐  species  pelagic  community,  including  diatoms  and  photosynthetic   protozoans  (flagellated).   •    live  in  mixed  communities  of  many  different  species   •    float  in  the  surface  waters  (epipelagic  zone)   •    microscopic  size   •    phytoplankton  photosynthesis  supports  food  webs     Phytoplankton  live  in  the  pelagic  zone   Adaptations  to  avoid  sinking  below  the  photic  zone:   1.  gas  bubbles  for  buoyancy     2.  increase  surface  area   •    long  processes  (spines)   •    formation  of  chains  or  colonies                               10         Sea  life  responses  to  ocean  temperature  variation   •   Tufted  puffins  are  major  top  predators   •   Chick  (‘fledgling’)  survival  declines  above  9.5oC     Harmful  Algal  Blooms  (HABs)   
 •   Phytoplankton  blooms  can  also  be  harmful  to  sea  life.   •   Of  thousands  of  phytoplankton  species,  about  80 -­‐90  species  are  toxic.     HABs:  ‘Red  tides’   •   Caused  by  toxic  dinoflagellates  with  reddish  pigments  that  reproduce   so  rapidly  that  they  color  the  sea.   •   Dinoflagellates  can  cause  Paralytic  Shellfish  Poisoning  Alexandrium     Seaweeds-­‐  the  large  marine  algae                           Seaweeds  are  limited  to  shallow  waters.   •   Because  they  are  larger  and  thicker  than  phytoplankton,  seaweeds   need  more  light  to  survive  and  grow.           11       Seaweed  Diversity   Seaweeds  are  identified  based  on  their  photosynthetic  pigments:   •   Green  (Division  Chlorophyta)     -­‐   Green  tropical  seaweeds  are  the  only  seaweeds  that  grow  in  soft   sediments.   •   Brown  (Division  Phaeophyta)     -­‐   Brown  seaweeds  can  be  very  small  but  they  include  the  largest   seaweeds  (kelps).   •   Red  (Division  Rhodophyta)   -­‐   Red  seaweeds  are  beautiful  and  inspire  art.   These  divisions  also  differ  in:     -­‐cell  wall  structure  storage  compounds  reproduction     Seaweed  life  histories   •   Are  diverse  and  often  Complex   •   Kelp  have  a  complex  life  history  with  two  stages,  each  with  a  different   morphology  (‘heteromorphic’).   •   The  sporophyte  produces  spores  that  settle  into  microscopic   gametophytes,  which  produce  gametes  (eggs  and  sperm).     Seaweeds  are  valuable  for:   -­‐Food  (Porphyra  or  nori  for  sushi)   -­‐Cell  wall  compounds  extracted  for  cosmetics   -­‐Health  supplements     Kelp  Forests   •    cool  waters  along  rocky  coasts.   •    20  m  tall   •    fast  growth  1  cm/day   •    highly  productive   •    provide  habitat   •    support  a  seaweed-­‐  based  food  web       12     Food  Chain   Kelp  –  sea  urchin  –  sea  otter   •   effect  of  a  top  predator  in  marine  ecosystems   •   Sea  otters  are  top  predators.   •   Sea  otters  control  sea  urchin.   •   Sea  urchins  eat  kelp.   When  present,  the  community  is  more  diverse.     The  sea  urchin   •   kelp  interaction  is  an  example  of  ‘top-­‐down’  control  of  marine   biodiversity.   •   Predators  can  keep  dominant  organisms  ‘in  check’,  from   outcompeting  other  species.   •   ‘Top  down’-­‐  control  of  marine  biodiversity  by  predators,  which  sit  at   the  top  of  the  food  web.  Also  referred  to  as  a  trophic  cascade.   The  loss  of  top  predators,  such  as  the  sea  otter,  can  result  in  loss  of  marine   biodiversity.     Abalone   •    mollusc  with  a  single  shell  (gastropod)   •    eats  kelp  detritus   •    large  muscular  foot  (edible)   •    several  species  (white,  red,  black,  green)   •    threatened  with  extinction   •    White  abalone  is  an  Endangered  Species.     Abalone  in  Kelp  Beds   •    live  in  kelp  beds   •    eaten  by  sea  otters  and  humans     •    herbivore  (live  red  algae)   •    detritivore  (kelp  detritus)   •    broadcast  spawners         13       Abalone  Offspring   •   larvae  prefer  to  settle  on  red  seaweeds,  
  their  habitat  and  food   source.   •   Gamma  amino-­‐butyric  acid  (GABA)   -­‐  neurotransmitter  compound   -­‐  induces  settlement  of  abalone   •   Red  algae  release  a  chemical  mimic  of  GABA     Abalone  Withering  Foot  Syndrome   
 •   In  addition  to  overharvesting,  abalone  are  decimated  by  disease.   •   Withering  foot  syndrome  kills  wild  &  farmed  abalone     Summary:  Phytoplankton  and  Seaweeds   •    Up  welling  ecosystems  are  very  productive  due  to  a  rich  supply  of   nutrients  from  deep  water.   •    CA  Coastal  Upwelling  Ecosystem  is  one  of  4  on  earth.   •    Diverse  groups  of  marine  algae   •    Phytoplankton   -­‐pelagic  primary  producers    –    HABs   •    Seaweeds-­‐benthic  primary  producers     –    many  examples  of  complex  life  histories   •    Foundation  of  marine  food  webs   –    CA  Coastal  Upwelling  Ecosystem  (phytoplankton  based)   –    Kelp  beds   (benthic  seaweed  based)   •    ‘Top-­‐down’  control  of  marine  food  webs     -­‐a  predator  controls  the  food  webs  ‘from  the  top’   –    Sea  otter-­‐sea  urchin-­‐kelp  example   •    Overharvesting  and  disease  can  decimate  marine  populations     End  of  Day  4  Notes   14  


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Allison Fischer University of Alabama

"I signed up to be an Elite Notetaker with 2 of my sorority sisters this semester. We just posted our notes weekly and were each making over $600 per month. I LOVE StudySoup!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.