New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Reviewer of Physics 101

by: Mindavi Rey Barnig

Reviewer of Physics 101

Mindavi Rey Barnig
GPA 1.7

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Notes With Important Details which will come out in Exams
No professor available
Class Notes
Physics, Ancient astronomy, Natural philosophy, Classical physics, Modern physics, philosophy, Core Theories, classical and modern physics
25 ?




Popular in Course

Popular in Department

This 6 page Class Notes was uploaded by Mindavi Rey Barnig on Wednesday January 6, 2016. The Class Notes belongs to a course at University of North Carolina - Charlotte taught by a professor in Fall. Since its upload, it has received 27 views.


Reviews for Reviewer of Physics 101


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 01/06/16
Physics (from Ancient Greek: φυσική (ἐπιστήμη) phusikḗ (epistḗmē) "knowledge of nature", from φύσις phúsis "nature) is the natural science that involves the study of matter and  its motion through space and time, along with related concepts such as energy and force. More  broadly, it is one of the mainanalyses of nature, conducted in order to understand how  the universe behaves.  Physics is one of the oldest academic disciplines, perhaps the oldest through its inclusion  of astronomy. Over the last two millennia, physics was a part of natural philosophy along  with chemistry, certain branches of mathematics, and biology, but during the scientific  revolution in the 17th century, the natural sciences emerged as unique research programs in their  own right. Physics intersects with many interdisciplinary areas of research, such  as biophysics and quantum chemistry, and the boundaries of physics are not rigidly defined. New ideas in physics often explain the fundamental mechanisms of other sciences while opening new  avenues of research in areas such as mathematics and philosophy. Physics also makes significant contributions through advances in new technologies that arise  from theoretical breakthroughs. For example, advances in the understanding  of electromagnetism or nuclear physics led directly to the development of new products that have dramatically transformed modern­day society, such as television, computers, domestic,  and nuclear weapons, advances in thermodynamics led to the development of industrialization,  and advances in mechanics inspired the development of calculus. Ancient astronomy Astronomy is the oldest of the natural sciences. The earliest civilizations dating back to beyond  3000 BCE, such as the Sumerians, ancient Egyptians, and the Indus Valley Civilization, all had a predictive knowledge and a basic understanding of the motions of the Sun, Moon, and stars. The  stars and planets were often a target of worship, believed to represent their gods. While the  explanations for these phenomena were often unscientific and lacking in evidence, these early  observations laid the foundation for later astronomy. According to Asger Aaboe, the origins of Western astronomy can be found in Mesopotamia, and  all Western efforts in the exact sciences are descended from late Babylonian. Egyptian  astronomers left monuments showing knowledge of the constellations and the motions of the  celestial bodies, while Greek poet Homer wrote of various celestial objects in  his Iliad and Odyssey; later Greek astronomers provided names, which are still used today, for  most constellations visible from the northern hemisphere.  Natural philosophy Natural philosophy has its origins in Greece during the Archaic period, (650 BCE – 480 BCE), when Pre-Socratic philosophers like Thales rejected non- naturalistic explanations for natural phenomena and proclaimed that every event had a natural cause. They proposed ideas verified by reason and observation, and many of their hypotheses proved successful in experiment; for example, atomism was found to be correct approximately 2000 years after it was first proposed by Leucippus and his pupil Democritus. Classical physics Physics became a separate science when early modern Europeans used experimental and  quantitative methods to discover what are now considered to be the laws of physics.  Major developments in this period include the replacement of the geocentric model of the solar  system with the helio­centric Copernican model, the laws governing the motion of planetary  bodies determined by Johannes Kepler between 1609 and 1619, pioneering work  on telescopes and observational astronomy by Galileo Galilei in the 16th and 17th Centuries,  and Isaac Newton's discovery and unification of the laws of motion and universal gravitation that would come to bear his name. Newton also developed calculus, the mathematical study of  change, which provided new mathematical methods for solving physical problems.  The discovery of new laws in thermodynamics, chemistry, and electromagnetics resulted from  greater research efforts during the Industrial Revolution as energy needs increased. The laws  comprising classical physics remain very widely used for objects on everyday scales travelling at non­relativistic speeds, since they provide a very close approximation in such situations, and  theories such as quantum mechanics and the theory of relativity simplify to their classical  equivalents at such scales. However, inaccuracies in classical mechanics for very small objects  and very high velocities led to the development of modern physics in the 20th century. Modern physics Modern physics began in the early 20th century with the work of Max Planck in quantum  theory and Albert Einstein's theory of relativity. Both of these theories came about due to  inaccuracies in classical mechanics in certain situations. Classical mechanics predicted a  varying speed of light, which could not be resolved with the constant speed predicted  by Maxwell's equations of electromagnetism; this discrepancy was corrected by Einstein's theory of special relativity, which replaced classical mechanics for fast­moving bodies and allowed for a constant speed of light. Black body radiation provided another problem for classical physics,  which was corrected when Planck proposed that light comes in individual packets known  as photons; this, along with the photoelectric effect and a complete theory predicting  discrete energy levels of electron orbitals, led to the theory of quantum mechanics taking over  from classical physics at very small scales. Quantum mechanics would come to be pioneered by Werner Heisenberg, Erwin  Schrödinger and Paul Dirac. From this early work, and work in related fields, the Standard  Model of particle physics was derived Following the discovery of a particle with properties  consistent with the Higgs boson at CERN in 2012 all fundamental particles predicted by the  standard model, and no others, appear to exist; however, physics beyond the Standard Model,  with theories such as super symmetry, is an active area of research. Areas of mathematics in  general are important to this field, such as study of probabilities. Philosophy In many ways, physics stems from ancient Greek philosophy. From Thales' first attempt to  characterize matter, to Democritus' deduction that matter ought to reduce to an invariant state,  the Ptolemaic astronomy of a crystalline firmament, and Aristotle's book Physics (an early book  on physics, which attempted to analyze and define motion from a philosophical point of view),  various Greek philosophers advanced their own theories of nature. Physics was known as natural philosophy until the late 18th century.  By the 19th century, physics was realized as a discipline distinct from philosophy and the other  sciences. Physics, as with the rest of science, relies on philosophy of science and its "scientific  method" to advance our knowledge of the physical world. The scientific method employs a  priori reasoning as well as a posteriori reasoning and the use of Bayesian inference to measure  the validity of a given theory.  The development of physics has answered many questions of early philosophers, but has also  raised new questions. Study of the philosophical issues surrounding physics, the philosophy of  physics, involves issues such as the nature of space and time, determinism, and metaphysical  outlooks such as empiricism, naturalism and realism.  Many physicists have written about the philosophical implications of their work, for  instance Laplace, who championed causal determinism, and Erwin Schrödinger, who wrote  on quantum mechanics. The mathematical physicist Roger Penrose has been called  a Platonist by Stephen Hawking, a view Penrose discusses in his book, The Road to Reality.  Hawking refers to himself as an "unashamed reductionist" and takes issue with Penrose's views.  Core Theories Though physics deals with a wide variety of systems, certain theories are used by all physicists.  Each of these theories were experimentally tested numerous times and found to be an adequate  approximation of nature. For instance, the theory of classical mechanics accurately describes the  motion of objects, provided they are much larger than atoms and moving at much less than  the speed of light. These theories continue to be areas of active research today. Chaos theory, a  remarkable aspect of classical mechanics was discovered in the 20th century, three centuries  after the original formulation of classical mechanics by Isaac Newton (1642–1727). These central theories are important tools for research into more specialized topics, and any  physicist, regardless of their specialization, is expected to be literate in them. These  include classical mechanics, quantum mechanics, thermodynamics and statistical  mechanics, electromagnetism, and special relativity. Classical Physics Classical physics includes the traditional branches and topics that were recognized and well­ developed before the beginning of the 20th century—classical mechanics,  acoustics, optics, thermodynamics, and electromagnetism. Classical mechanics is concerned with bodies acted on by forces and bodies in motion and may be divided into statics (study of the  forces on a body or bodies not subject to an acceleration),kinematics (study of motion without  regard to its causes), and dynamics (study of motion and the forces that affect it); mechanics may also be divided into solid mechanics and fluid mechanics (known together as continuum  mechanics), the latter include such branches as hydrostatics, hydrodynamics, aerodynamics, and  pneumatics. Acoustics is the study of how sound is produced, controlled, transmitted and  received. Important modern branches of acoustics include ultrasonic, the study of sound waves  of very high frequency beyond the range of human hearing; bioacoustics the physics of animal  calls and hearing, and electro acoustics, the manipulation of audible sound waves using  electronics. Optics, the study of light, is concerned not only with visible light but also with  infrared and ultraviolet radiation, which exhibit all of the phenomena of visible light except  visibility, e.g., reflection, refraction, interference, diffraction, dispersion, and polarization of  light. Heat is a form of energy, the internal energy possessed by the particles of which a  substance is composed; thermodynamics deals with the relationships between heat and other  forms of energy. Electricity and magnetism have been studied as a single branch of physics since the intimate connection between them was discovered in the early 19th century; an electric  current gives rise to a magnetic field, and a changing magnetic field induces an electric  current. Electrostatics deals with electric charges at rest, electrodynamics with moving charges,  and magneto statics with magnetic poles at rest. Modern physics Classical physics is generally concerned with matter and energy on the normal scale of  observation, while much of modern physics is concerned with the behavior of matter and energy  under extreme conditions or on a very large or very small scale. For example, atomic and nuclear physics studies matter on the smallest scale at which chemical elements can be identified.  The physics of elementary particles is on an even smaller scale since it is concerned with the  most basic units of matter; this branch of physics is also known as high­energy physics because  of the extremely high energies necessary to produce many types of particles in particle  accelerators. On this scale, ordinary, commonsense notions of space, time, matter, and energy are no longer valid. The two chief theories of modern physics present a different picture of the concepts of space,  time, and matter from that presented by classical physics. Classical mechanics approximates  nature as continuous, while quantum theory is concerned with the discrete nature of many  phenomena at the atomic and subatomic level and with the complementary aspects of particles  and waves in the description of such phenomena. The theory of relativity is concerned with the  description of phenomena that take place in a frame of reference that is in motion with respect to  an observer; the special theory of relativity is concerned with relative uniform motion in a  straight line and the general theory of relativity with accelerated motion and its connection  with gravitation. Both quantum theory and the theory of relativity find applications in all areas of modern physics. Difference between classical and modern physics The basic domains of physics While physics aims to discover universal laws, its theories lie in explicit domains of  applicability. Loosely speaking, the laws of classical physics accurately describe systems whose  important length scales are greater than the atomic scale and whose motions are much slower  than the speed of light. Outside of this domain, observations do not match predictions provided  by classical mechanics. Albert Einstein contributed the framework of special relativity, which  replaced notions of absolute time and space with space­time and allowed an accurate description  of systems whose components have speeds approaching the speed of light. Max Planck, Erwin  Schrödinger, and others introduced quantum mechanics, a probabilistic notion of particles and  interactions that allowed an accurate description of atomic and subatomic scales. Later, quantum  field theory unified quantum mechanics and special relativity. General relativity allowed for a  dynamical, curved space­time, with which highly massive systems and the large­scale structure  of the universe can be well­described. General relativity has not yet been unified with the other  fundamental descriptions; several candidate theories of quantum gravity are being developed.


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Janice Dongeun University of Washington

"I used the money I made selling my notes & study guides to pay for spring break in Olympia, Washington...which was Sweet!"

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.