×

### Let's log you in.

or

Don't have a StudySoup account? Create one here!

×

or

## MAT 211- Lecture 3- Section 15.1 (Cont.)

by: Brigette Maggio

14

0

5

# MAT 211- Lecture 3- Section 15.1 (Cont.) MAT 211

Marketplace > Arizona State University > Math > MAT 211 > MAT 211 Lecture 3 Section 15 1 Cont
Brigette Maggio
ASU
GPA 3.9

Get a free preview of these Notes, just enter your email below.

×
Unlock Preview

These notes cover MAT 211- Lecture 3- Section 15.1 Continued.
COURSE
PROF.
Dr. Mohacsy
TYPE
Class Notes
PAGES
5
WORDS
CONCEPTS
Math, MAT 211
KARMA
25 ?

## Popular in Math

This 5 page Class Notes was uploaded by Brigette Maggio on Thursday January 14, 2016. The Class Notes belongs to MAT 211 at Arizona State University taught by Dr. Mohacsy in Fall 2015. Since its upload, it has received 14 views. For similar materials see Math for Business Analysis in Math at Arizona State University.

×

## Reviews for MAT 211- Lecture 3- Section 15.1 (Cont.)

×

×

### What is Karma?

#### You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 01/14/16
MAT 211­ Lecture 3­ Section 15.1 (Cont.) Position of Two Planes in the xyz plane can: ­be parallel ­OR intersect in a line (called a line of intersection) ­Ex.: At which line the plane z= ­3x­2y+6 and the yz coordinate plane intersect? yz coordinate plane­­­­­> x=0 z= ­2y+6  ­Ex.: At which line the plane z= ­3x­2y+6 and the xz coordinate plane intersect? xz coordinate plane­­­­­> y=0 z= ­3x+6 ­Ex.: At which line the plane z= ­3x­2y+6 and the xy coordinate plane intersect? xy coordinate plane­­­­­> z=0 z= ­3x­2y+6 ­Ex.:  ­Homework Problem #13.) z= f(x,y)= 1­3x+2y x­int.: y=0, z=0                     0= 1­3          x= ⅓ (⅓,0,0) y­int.: z=0, x=0                     0= 1+2y                     y= ­½ (0,­½,0) z­int.: x=0, y=0                     z= 1 (0,0,1) 2 2 2 2 ­Ex.: z= f(x,y)= x +y Find the graph of the function z= x +y . a.) At which curve the surface z= f(x,y)= x +y  and the xz coordinate plane  intersect? y=0 2 2 z=x +y 2 z=x ­­­­­>curve of intersection 2 2 b.) At which curve the surface z= x +y  and yz coordinate plane intersect? x=0 z= x +y 2 z= y ­­­­­> curve of intersection (creates a paraboloid) 2 2 ­Ex.: At which curve the surface z= x +y  and the plane z=y intersect? z= 4 z= x +y 2 2 2 4= x +y ­­­­­> circle ­Ex.: f(x,y)= ­ √❑ z­int: x=0 & y=0 z= ­ √ ❑ 2 2 2 z= ­ √❑ z = 1­ (x +y ) 2 2 2 x +y +z = 1 sphere radius= 1 center= (0,0,0) z= ­ √ ❑ ­­­­­­­> lower semi­sphere ­15.2­ Partial Derivative of z= f(x,y) with respect to x is the derivative of z= f(x,y) with respect  to x. ­When y coordinate is fixed, Notation: sigma f/ sigma x (or fx) ­rate of change of z with respect to x when y is fixed

×

×

### BOOM! Enjoy Your Free Notes!

×

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

## Why people love StudySoup

Jim McGreen Ohio University

#### "Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Jennifer McGill UCSF Med School

#### "Selling my MCAT study guides and notes has been a great source of side revenue while I'm in school. Some months I'm making over \$500! Plus, it makes me happy knowing that I'm helping future med students with their MCAT."

Bentley McCaw University of Florida

Forbes

#### "Their 'Elite Notetakers' are making over \$1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!
×

### Refund Policy

#### STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

#### STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com