New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Week 1 of notes

by: Paige Notetaker

Week 1 of notes GEOG 1111

Paige Notetaker
View Full Document for 0 Karma

View Full Document


Unlock These Notes for FREE

Enter your email below and we will instantly email you these Notes for Intro to Physical Geography

(Limited time offer)

Unlock Notes

Already have a StudySoup account? Login here

Unlock FREE Class Notes

Enter your email below to receive Intro to Physical Geography notes

Everyone needs better class notes. Enter your email and we will send you notes for this class for free.

Unlock FREE notes

About this Document

All of the filled in notes
Intro to Physical Geography
Class Notes




Popular in Intro to Physical Geography

Popular in Geography

This 16 page Class Notes was uploaded by Paige Notetaker on Thursday January 14, 2016. The Class Notes belongs to GEOG 1111 at University of Georgia taught by Hopkins in Fall 2015. Since its upload, it has received 24 views. For similar materials see Intro to Physical Geography in Geography at University of Georgia.


Reviews for Week 1 of notes


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 01/14/16
Geography Notes- Lecture 1 GEOGRAPHY is the study and analysis of the spatial and temporal distribution of phenomena on the Earth’s surface, and the underlying processes which cause the observed pattern. Where are these phenomena, what is their pattern, but more importantly, why is the pattern the way it is, what causes it.    *   The spatial science of areas, natural systems, & human-made systems. Five Fundamental Themes of Geography:  Location can be both absolute and relative. It is the spatial component of geography, the being concerned with where things are.     absolute:  latitude & longitude, or GPS coordinates     relative:  comparing one location to another by the distance between them             as measured in either time or miles (kms) Place refers to those characteristics that make a location unique.     EX:  What makesAthens, GAdifferent fromAthens, OH. Movement is the what, how, where and why of the diffusion of organisms             and physical events across the Earth’s surface.     EX:  The migration of people, a hurricane, etc. Regions refers to the study of areas with uniform or similar cultural             and/or physical characteristics.     EX:  NorthAmerica vs. SouthAmerica, etc.   Human-Earth Relationships looks at the impacts of the environment         on people & their impact on the environment. It is the relationship         between human societies & their environment.      EX:   The impacts of deforestation, human pollution, agriculture, etc.;                 the relationship between the environment & human technological                 development. 3 Main Sub-disciplines or areas in Geography  Physical Geography: (non-human-made patterns)  Biogeography,      Geomorphology, Climatology, Hydrogeography, Soils geography Human/Cultural Geography: (human-made patterns)   Economic,     Political, Historical, Cultural, Urban, Population, etc. Technique:s(the tools of geography)  Cartography, Remote Sensing,    Aerial Photography, Geographic Information Systems/Science (GIS) In this course we are concerned primarily with  Physical Geography. *As an area of study, Geography is quite old.    *   Eratosthenes, a Greek who lived from 275 to 195 B.C., is considered             one of the first “geographers”.      *  He measured the polar circumference of the Earth.      *  He became an accomplished cartographer or map-maker.      *  He developed the idea of environmental zones based on              temperature (Tº). **   Some other early geographers:   *   Greek scholars: Aristotle,   Hipparchus   *   Roman scholars:   Strabo,   Ptolemy     *   Muslim scholars:   Edrisi,   ibn-Batuta     *   Chinese scholars:   Phei Hsiu, (Chinese geographical study             has been dated as far back as the 5th cent. B.C.) **  More recent geographers: *  Alexander von Humboldt, (1769-1859), considered by some the         “father” of modern physical geography.     *  credited with bringing “scientific study” to physical geography *  Vladimir Köppen(Koeppen) (1846-1940), developed the Köppen         Classification System for climates based on vegetation, temperature         & precipitation patterns. *   Alfred Wegner (1880-1930), developed the Theory of Continental Drift         which later became part of the theory of Plate Tectonics. *   Charles Thornthwaite (1899-1963), developed another climate         classification system based on the principle of water balance,         precipitation & potential evapotranspiration. *   Tetsuya Theodore Fujita (1920-1998), developed the Fujita Scale         for measuring the intensity of tornadoes. *   Robert Simpson (1915-   ), developed, along with Herbert Saffir,         the Saffir-Simpson Scale for measuring hurricane intensity. *  Some other prominent Physical Geographers or related scholars:   Climate:  Tim Oke,  Lonnie Thompson,  Russ Mather,  Roger Barry,     James Hansen,  Syukuro Manabe, Joanne Simpson   Geomorphology:  James C. Knox, Stanley Trimble, Luna Leopold,     Stanley Schumm, Gordon Wolman,  Karl Butzer,  Carol Harden   Biogeography:  Tom Veblen, Jarrod Diamond, Glen MacDonald,     Eugene & Howard Ovum EARTH’S SPHERES    Atmosphere is the thin gaseous veil which surrounds the Earth.     *   From sea level to about 60,000 km (37,000 mi) above surface.     *   This is where weather occurs, our air supply is, etc.    Hydrosphere is all the water above, on, and in the Earth in all         three (3) states (solid, liquid, gas), freshwater, saline (saltwater),         and in-between.     *   It comprises some 71% of the Earth’s surface, primarily as oceans.     *   Vital for most living organisms, many weather and many          geomorphic processes.    Lithosphere is the Earth’s crust and a portion of the upper mantle.     *   It is the rocky, outer shell of the planet, both land (continents)         and the sea bottom.    Biosphere all the living organisms of the planet and the         interconnections between them and their physical environment. SYSTEMS:  It’s common to study “systems” or all the factors influencing an         area or particular phenomena.    EX:   a fluvial (river) system, a thunderstorm or hurricane system,             an ecosystem, etc. Two Basic Types: Open System is where the boundaries or interfaces between parts of the         systemAND other systems allows for the free transfer of energy and         matter across them.     EX:   a weather system, river drainage system, an ecosystem Closed System is self-contained exhibiting no exchange of energy         or matter across boundaries. Systems change, they are dynamic, but tend to be in, or in the process of     being in some form of an equilibrium state. Equilibrium State is the changing, or relatively non-changing conditions of a system.All systems will change over time, but at different rates, thus some are seemingly in equilibrium while may be moving toward a state of equilibrium. Steady-state Equilibrium is when a system is in balance over time, is neither growing nor contracting but is in full operation. May exhibit small oscillations around an average level or condition however. Dynamic Equilibrium is when a system exhibits wide fluctuates around an average value, and in which the average demonstrates a trend over time. Feedback Mechanism is a process by which when the normal operations of a     system cause a portion of the system’s output to be returned as information      input. This may cause changes which guide further system operations.     What happens in one part of a system has an effect on other parts.  Two types of Feedback Mechanisms:     Negative Feedback tends to slow or reduce responses in a system and         promotes self-regulation of the system. This tends to keep the system         in its original condition, inhibiting change.           EX:  a large mass of ice keeps the air above it cold, which keeps the ice                 cold, which keeps the air cold, keeping the ice cold, …..     Positive Feedback tends to amplify or encourage responses in a system. It         induces progressively greater changes in other parts of the system. What         might be termed the “snowball effect”.         EX:  growth of a hurricane;  the system draws into it warm, moist air off                 an ocean which causes it to grow, drawing in more warm, moist air,                 causing it to grow, drawing in even more air, ... Geography notes- lecture 2 LATITUDE  &  LONGITUDE Earth is a sphere or has a spheroidal shape. But it actually bulges at the     Equator or more accurately has a geoidal bulge at the Equator.     Equatorial diameter:  12,756 km = 7926 mi   (24,902 mi circum.)     Polar diameter:  12,714 km = 7900 mi   (24,860 mi circum.) To locate places on the surface we use a grid system. Several types have     been developed and are in use.  Most common or well known is the       latitude and longitude grid system. Latitude are the lines that run East-West, are parallel and are measured     North-South, starting at 0º (the Equator), and ending     at 90º (the N & S Pole). Longitude are the lines that run North-South, are non-parallel and are     measured East-West, starting at 0º (the Prime Meridian), and ending     at 180º (the International Date Line). * Adegree is part of a circle, with 360 parts or degrees in a complete circle. * Adegree can be further sub-divided into 60 equal parts or minutes     and a minute is further sub-divided into 60 equal parts or seconds.         EX:    30º 35' 15" N   87º 55' 30" W Latitude must have a N or S after it for north (N) or south (S). Longitude must have an E or W for east (E) or west (W). Know the major lines of latitude and longitude:    Latitude:  Equator, Tropic of Cancer, Tropic of Capricorn,                         (0°)            (23.5° N)                (23.5° S)        Arctic Circle,Antarctic Circle, North Pole, South Pole             (66.5° N)           (66.5° S)            (90° N)        (90° S)    Longitude:  Prime Meridian, International Date Line                                   (0°)                         (180°) We write latitude first and then longitude:      12º 35' 15" N   104º 55' 30" E      NOT     104º 55' 30" E   12º 35' 15" N *  The Earth’s rotation and the Meridians of Longitude determine the     Time Zones.    *  1 time zone is 15º of longitude;    360º/24hr (1 day) = 15º/h │ 9am  │ 10am  │ 11am  │ 12pm   │ 1pm    │ 2pm     │ 3pm  │ -----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----    45ºW      30ºW      15ºW        0º          15ºE       30ºE        45ºE     Rio de         Iceland          London     Berlin     Istanbul   Moscow     Janeiro               Dakar        Paris      Rome        Cairo MAPPROJECTIONS *  There are problems with transferring a round object, the globe (Earth),     onto a flat surface, a piece of paper, or a computer screen. Distortion     of the physical size and shape will often be present. *  This can be done by an orderly arrangement of crisscrossing lines,         parallels of latitude and meridians of longitude. *  Several methods of showing or projecting the Earth's surface have been      devised and thus several different map types and projections are in use.     *  Mercator (one of the most common types used, esp. for large wall maps).     *   conic        *  cylindrical        *  planar     *  equal-area         *  polar        *  gnomonic *  The Scale of a map, the ratio of distance on the map to the actual         distance on the ground, is also important. The amount of detail a map         can display will vary with the scale.     EX:  1:24,000 is a representative fraction which means that 1 inch                 on the map equals 24,000 inches on the ground (2000 feet).     ALarge Scale map shows a relatively small area of the Earth’s surface         and thus more detail.         1:1000000 means 1 inch on the map equals 1 million inches on the ground             (or 83,333.33 feet or 15.78 miles).                 ASmall Scale map shows a relatively large area of the Earth’s surface         and thus less detail. Geography notes- lecture 3 EARTH/SUN RELATIONSHIPS **  Greater than (>) 99% of Earth’s energy is from the Sun.    *  The amount (intensity) of sunlight striking the Earth varies spatially         (over space or area) with latitude.AND varies temporally (over time)         with the seasons (day length) and between day & night.    *  These variations cause an unequal heating of the Earth’s surface         which drives the ocean currents, forms wind, which in turn         transports energy across the globe. Earth Movements  Rotation is the spinning of the Earth on its axis. It makes one (1) turn about         every 24 hours defining day & night. Thus the same side of the planet          is not always facing the Sun and solar intensity varies.     *  The Earth turns counterclockwise, when viewed above the North Pole         and the atmosphere rotates with the Earth, held by force of gravity.     * Acircle of illumination forms between the area of light (daytime)         & dark (nighttime).    Revolution is the movement of the Earth in its orbit around the Sun. It         makes one orbit every 365.2422 days (365 days, 5.8 hrs.), commonly         called 1 calendar year.     *  It is a counterclockwise orbit, when viewed above the North Pole.     *  The orbit is elliptical, so at one time of the year it is closer to the Sun         than the opposite end of the orbit and solar intensity varies.         These 2 points are known as:     Perihelion when the Earth & Sun are closest to each other, (about         1.47 X 108 km or 91,500,000 miles apart), which occurs on January 4.         Thus a little higher solar intensity.     Aphelion when the Earth & Sun are the furthest apart, (about         1.52 X 108 km or 94,500,000 miles apart), which occurs on July 4.         Thus a little lower solar intensity. Earth’s Seasons    Why they occur:       *  Revolution     *  Rotation     *  Tilt of the Earth on itsAxis     * Axial parallelism     *  Sphericity    *   Earth’s seasons are due to the Earth’s orientation to the Sun & thus the             varying angle the Sun’s rays strike the Earth’s surface.     *  Earth’s orientation to the Sun is a result of the tilt on its axis or the            inclination of the axis, currently 23.5º from a perpendicular to the plane            of the ecliptic. Its Revolution around the Sun and its daily Rotation on its             axis are also major factors.     *  The Earth’s axial parallelism or the orientation of the North Pole of the             Earth toward a specific star and the fact that the Earth is a sphere (its             sphericity) are also factors controlling solar intensity at the surface.     (Three of these factors, inclination of the axis, axial parallelism, and the      shape of the Earth’s orbit (revolution), change over long periods of time.) **  This can be seen by the varying solar intensity with day length &         with varying seasons.      *  Summer has longer days, with a higher solar altitude, & thus more             intense sunlight and more energy.      *  Winter is essentially the opposite of summer, shorter days with a             lower solar altitude & thus less intense sunlight and less energy.   *  SolarAltitude (SA) is the angle of the Sun above the horizon at any             given latitude.         EX: At a SAof 90º, the sun is “directly overhead”, and thus yields                 the potentially maximum solar intensity.    Solstices & Equinoxes *  The five factors above cause the seasons, with 4 days of particular     interest:  the 2 Solstices & the 2 Equinoxes.      **   March Equinox                Mar 21 – 22         (start of Spring in NH  &  start of Fall in SH)      **   June Solstice                Jun  21 – 22         (start of Summer in NH  &  start of Winter in SH)      **   September Equinox            Sep 22 – 23         (start of Fall in NH  &  start of Spring in SH)      **   December Solstice            Dec 21 – 22         (start of Winter in NH  &  start of Summer in SH) (Know the months for each of these events and for each hemisphere.)    *  The Sun is never directly overhead (SA= 90º) outside 23.5º N or S             latitude (the Tropic of Cancer & Capricorn).    *  The northern hemisphere winter = southern hemisphere summer, etc. Climatological Seasons:   (Also know these for the NH only.)            Winter:        Dec,   Jan,   Feb     Spring:        Mar,  Apr,   May     Summer:        Jun,   Jul,  Aug     Fall:            Sep,   Oct,   Nov Geography notes- lecture 4 WEATHER vs CLIMATE ** The day-to-day ** The statistical properties of the conditions of the atmosphere, including measures of the Atmosphere. average conditions, variability, etc. over long periods of time. ** constantly changing ** slow, long-term changes ** The state or condition of the ** Adescription of aggregate atmosphere at a particular weather conditions. time and place. ** Comprised of various factors: ** Asum of the daily and seasonal air pressure, air temperature, weather events over decades, humidity, clouds, precipitation, hundreds or thousands of years wind, visibility, etc. (averages of these factors). Meteorology: The science that studies the atmosphere and it processes on a short-term basis Climatology: The study of long-term atmospheric conditions   ORIGIN OFTHEATMOSPHERE A B C D --|------------------------------------|------------------------------|-------------------- 4.5 bya 3 - 1.5 bya .5 bya A: Earth Formed and hot gases escape (the process of outgassing) B: Earth cooled and gases accumulate.Atmosphere comprised mainly of CO 2carbon dioxide), N2(nitrogen), & methane. Little to no2O (oxygen) or3O (ozone). C: O2 generating aquatic organisms evolve and oxygen supply slowly rises D: Green land plants widespread and the atmosphere has taken on its basic present conditions. Ozone levels increase and spread. ** Main process for increased oxygen levels is photosynthesis. COMPOSITION OFTHEATMOSPHERE * The atmosphere is a mixture of discrete gases, with solid & liquid particles suspended within it. Some components are fairly stable while others vary spatially and/or temporally. Constant Gases are those found in the same proportions (%) within the lower atmosphere (up to 50 miles altitude) Variable Gases are those present in differing amounts spatially and/or temporally within the lower atmosphere. Constant Gases: 3 gases make-up just under 100% of the atmosphere Nitrogen (N): ~ 78% Oxygen (O ):2 ~ 21% Argon (Ar): ~ .9% Variable Gases: 4 which influence weather and life systems Carbon dioxide (CO ) 2 Water vapor (H O)2 Ozone (O )3 Methane (CH ) 4 Carbon dioxide & Methane are 2 of the “Greenhouse Gases” which help absorb & reflect long wave or terrestrial radiation (heat energy) emitted by the Earth, and thus help regulate surface temperatures. Water vapor, also a “Greenhouse Gas”, is quite variable throughout the atmosphere, ranging from about 4% by volume in tropical areas to < 1% in some deserts. * It is the source material for cloud formation and precipitation. * it also absorbs radiant energy and helps regulate surface Tºs & is important in energy transfer within the atmosphere * Water is only substance found in all 3 states (solid, liquid, gas). Carbon dioxide, methane, water vapor and nitric oxides are all known as the “Greenhouse Gases”. Ozone is concentrated in the stratosphere (10 - 50 km above the surface) in amounts of < .00005% by volume of the atmosphere. * It is not a “greenhouse gas” but does absorb damaging ultraviolet (UV) radiation coming from the Sun * It is important not only because it helps block-out some of the UV radiation which is harmful to living organisms, but this also helps regulate surface T°s. ***ozone is not a greenhouse gas!!! ** OZONE “HOLE” * The commonly called phenomena of an “Ozone Hole” around the Earth’s Polar Regions is really a seasonal depletion of ozone in the stratosphere. This is thought to be caused by increased amounts of chlorofluorocarbons (CFC’s) in the stratosphere because the chlorine atom of the CFC molecule has been shown to break apart ozone molecules. * Some research suggests that a 1% loss of O 3eads to a 2% increase in UV radiation reaching the Earth's surface. ** Some consequences of less ozone: * Increased amounts of UV radiation reach the Earth’s surface which can lead to: * Increased cases of human skin cancer & cataracts, and increased damage to other animals and to plants. * Increased energy reaching the Earth’s surface and this increased surface temperatures VERTICAL STRUCTURE OF THEATMOSPHERE Important aspects of the atmosphere: Air Pressure & Temperature. Air Pressure is the force exerted by the weight of a column of air above a given point * At sea level the average pressure is 1013 mb or 1 kg above every cm2, or 29.92 inches of mercury. * There is an inverse relationship between air pressure and height, such that air pressure decreases with increasing height * Regarding volume, 50% of the atmosphere is below 5.6 km (~ 3.36 mi) and 90% of the atmosphere is below 16 km (~ 9.6 mi). Temperature (Tº) is the average molecular motion of an object. It is a measure of the degree of hotness or coldness of a substance. * Tº may decrease or increase with changing altitude in the atmosphere. * In the Troposphere it normally decreases with an increase in altitude at an average rate of 6.5Cº/km, BUT if the Tº increases with altitude it’s called a Temperature Inversion. * Any change in Tº with a change in altitude is termed a Temperature Lapse Rate. Layers of theAtmosphere: Two general regions based on their chemical composition: Homosphere which is the area of uniform chemical composition in the lower atmosphere (surface to 80 - 100 km (50 - 63 mi) altitude). Heterosphere which is the area of non-uniform chemical composition in the upper atmosphere (above the Homosphere). There are also 4 layers delineated by temperature changes: Troposphere is where Tº usually decreases with increasing altitude from the surface to an average altitude of 8-10 miles * The troposphere is heated from the ground up * This is where almost all weather takes place. Stratosphere is where Tº stays constant or increases with altitude. * It lies above the troposphere to an altitude of about 50km (31 mi) and contains the ozone layer which is the heating element for this layer. Mesosphere shows a Tº decrease with increasing altitude between ~ 50 & 80 km (31 & 50 mi). Thermosphere is the top layer and where Tº increases dramatically with altitude. It is also the area of the atmosphere where the aurora borealis and aurora australis occur (Northern & Southern Lights).


Buy Material

Are you sure you want to buy this material for

0 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Jennifer McGill UCSF Med School

"Selling my MCAT study guides and notes has been a great source of side revenue while I'm in school. Some months I'm making over $500! Plus, it makes me happy knowing that I'm helping future med students with their MCAT."

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.