New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Anatomy and Physiology II Week 1 Notes: Endocrine System PPT 1

by: Victoria Hills

Anatomy and Physiology II Week 1 Notes: Endocrine System PPT 1 Biol 2230-001

Marketplace > Clemson University > Biology > Biol 2230-001 > Anatomy and Physiology II Week 1 Notes Endocrine System PPT 1
Victoria Hills
GPA 3.8
View Full Document for 0 Karma

View Full Document


Unlock These Notes for FREE

Enter your email below and we will instantly email you these Notes for Human Anatomy & Physiology II

(Limited time offer)

Unlock Notes

Already have a StudySoup account? Login here

Unlock FREE Class Notes

Enter your email below to receive Human Anatomy & Physiology II notes

Everyone needs better class notes. Enter your email and we will send you notes for this class for free.

Unlock FREE notes

About this Document

These are notes from the slides for the first endocrine system powerpoint.
Human Anatomy & Physiology II
Dr. John Cummings
Class Notes
anatomy, Physiology, Clemson, Cummings, Endocrine, system




Popular in Human Anatomy & Physiology II

Popular in Biology

This 12 page Class Notes was uploaded by Victoria Hills on Sunday January 17, 2016. The Class Notes belongs to Biol 2230-001 at Clemson University taught by Dr. John Cummings in Fall 2015. Since its upload, it has received 173 views. For similar materials see Human Anatomy & Physiology II in Biology at Clemson University.


Reviews for Anatomy and Physiology II Week 1 Notes: Endocrine System PPT 1


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 01/17/16
Clemson  University   Spring  2016   Human  Anatomy  and  Physiology  II   Endocrine  System  PowerPoint     1/12/16  Notes   Abbreviations:  AA  =  Amino  Acid;  Ex  =  Example;  FA  =  Fatty  Acid       Slide  1:  Endocrine  System     Slide  2:  Activity  Controlling  Mechanisms   • Theme  of  homeostasis  in  the  nervous  and  endocrine  systems   • Review:  Nervous  System   -­‐ The  nervous  system  creates  an  electrical  impulse  to  respond  to  stimuli     -­‐ Able  to  activate  excitable  tissue  (Ex:  Muscles-­‐  Cardiac  and  skeletal  and   some  glands)   -­‐ Responds  very  quickly  to  stimuli  (Within  milliseconds)   -­‐ Responses  are  generally  short-­‐lived   • Endocrine  system:   -­‐ Can  activate  a  target  cell  using  a  chemical  messenger  (Ex:  Hormone)   -­‐ Chemical  messenger:  Goes  into  blood  stream  and  travels  throughout  the   body  until  it  reaches  a  target  cell  with  the  specific  receptor  for  that   hormone   -­‐ Target  cell:  Cell  that  possesses  the  receptor  for  the  hormone     -­‐ Hormones  are  chemical  secretions  produced  by  glands  that  change   cellular  metabolic  activity     • Explicit  Differences  between  the  nervous  sand  endocrine  systems:   -­‐ The  nervous  system  responds  almost  immediately  vs.  the  endocrine   system  having  a  lag  time  (Can  take  from  a  few  seconds  to  days  for  a   response)   -­‐ The  nervous  system  lasts  for  a  short  amount  of  time  while  the  endocrine   system  has  a  longer  response     • Nervous  system  and  endocrine  system  due  function  together  although  they   have  different  properties   Slide  3:  Glands-­‐  Exocrine   • Exocrine  glands  produce  secretions  that  are  not  hormones  (These  secretions   are  not  part  of  the  endocrine  system)   • Example  of  exocrine  glands:  Sweat  glands,  salivary  glands,  digestive  enzymes   produced  by  exocrine  glands   • Exocrine  glands  have  a  duct  for  the  most  part  where  the  secretions  are   secreted  into  in  order  to  go  to  the  site  where  its  going  to  have  its  activity     Slide  4:  Glands-­‐  Endocrine   • Endocrine  glands  produce  hormones  and  are  ductless     • Secrete  on  the  surface  and  are  picked  up  in  circulation  and  transported   through  the  body   • Endocrine  glands  are  therefore  very  vascularized  in  order  to  increase   efficiency  in  circulation     • Pancreas:  Considered  to  be  an  exocrine  and  endocrine  gland   -­‐ Part  of  the  pancreas  secretes  digestive  enzymes  into  a  duct  that  carries   into  the  small  intestine   -­‐ The  other  part  of  the  pancreas  secretes  hormones  like  insulin  or  glucagon   that  is  transported  in  the  blood  stream  in  order  to  maintain  blood  glucose   levels   Slide  5:  Neuroendocrine  Link   • There  is  a  link  between  the  nervous  and  endocrine  systems   • The  nervous  system  can  activate  glands  so  that  a  nervous  impulse  could   travel  to  an  endocrine  gland  to  cause  it  to  secrete  something     • The  presence  of  a  hormone  could  turn  on  or  off  impulses   • Specific  example  with  a  strong  link:  Hypothalamus   -­‐ Part  of  the  midbrain  (Neural  tissue)   -­‐ Connected  to  the  pituitary  gland  that  has  some  strong  endocrine   functions     -­‐ Mechanism:  Signal  is  sent  from  the  hypothalamus  to  the  pituitary  gland  to   release  hormones     Slide  6:  Chemical  Messengers   • Hormones:   -­‐ Chemical  secretion  produced  in  one  part  of  the  body  but  has  an  effect   somewhere  else  in  the  body   -­‐ Long-­‐distance  chemical  messenger   • Autocrines:   -­‐ Chemical  produced  by  a  cell  that  changes  the  activity  of  that  cell   -­‐ Short-­‐distance  chemical  messenger     -­‐ “Self-­‐regulator”   -­‐ Only  affects  the  cell  that  produces  the  chemical     • Paracrines:   -­‐ Chemical  that  is  secreted  by  cells  that  affect  the  neighboring  cells  in  that   area   -­‐ Key  to  understand  that  they  only  affect  the  area  where  it  was  produced   • Pheromones:   -­‐ Chemical  secretion  that  alters  behavior  of  another  individual     -­‐ Ex.  of  non-­‐human  functions:  Marking  territory,  mate  attraction,  etc.   -­‐ 1970’s:  Research  on  mate  attraction  showed  that  humans  due  produce   pheromones  and  was  seen  in  perspiring  women     Slide  7:  Hormone  Classifications:  1)  Amino  Acid  Based   • Derivative  of  AA     • Water  soluble     • Cannot  diffuse  across  the  plasma  membrane  because  of  its  hydrophobic   properties  due  to  lipids  (Chemical  composition  helps  us  understand  where   receptors  are  located  for  that  cell)   • Majority  of  the  hormones  produced  in  the  body  are  AA  derivatives  (Non-­‐ steroids)  and  almost  all  the  hormones  produced  are  water  soluble   Slide  8:  Hormone  Classifications:  2)  Steroid   • Steroid:  A  derivative  of  cholesterol  which  is  fat  soluble     • Can  diffuse  across  the  plasma  membrane  by  itself   • Steroid  hormones  are  only  produced  by  the  gonads  (Testes  and  ovaries)  or   cortex  of  the  adrenal  gland;  Otherwise,  the  hormone  is  AA  based  if  it  is  not   produced  by  these   Slide  9:  Hormone  Classifications:  Eicosanoid  (Not  truly  considered  to  be   hormones)   • Eicosanoid:  Biologically  active  lipid  that  is  a  chemical  secretion  that  has  a   localized  effect  –  What  makes  it  not  a  true  hormone  (Similar  to  a  paracrine   but  is  not  exactly  the  same)   • The  2  most  common  types  of  eicosanoids:   a) Prostaglandins:   -­‐ Biologically  active  lipids     -­‐ Ex:  When  there  is  damage  to  a  tissue,  the  tissue  releases  prostaglandins   that  cause  other  cells  to  migrate  to  the  site  and  can  disrupt  the  action  of   the  action  potential  in  the  nervous  system  so  that  won’t  have  a  pain  signal   -­‐ Ex:  One  ovulating  ovary  secretes  prostaglandins  so  that  the  sperm  know   which  one  to  go  to       b) Leukotrines     Slide  10:  Hormone  Actions-­‐  Target  Cells   • Target  Cell:  Anything  that  has  a  receptor   • Figure  on  the  slide:  Hormone  producing  structure   -­‐ Blue  dot  is  a  hormone  and  is  secreted  on  the  surface  of  the  structure  and   the  moves  into  the  blood  stream  to  be  transported  throughout  the  body     -­‐ The  hormone  will  only  have  an  affect  on  cells  with  the  receptor  specific  to   that  hormone     • Cells  can  respond  to  different  hormones  with  different  kinds  of  specific   receptors   Slide  11:  Hormone  Actions-­‐  Open  or  close  ion  channels   • Actions  of  hormones  when  they  act  on  target  cells:  When  the  hormone  binds   to  its  specific  receptor  of  a  cell,  it  changes  the  permeability  which  is  what   allows  the  changes  in  ion  flow     Slide  12:  Hormone  Actions-­‐  Stimulates  protein  synthesis     • Hormones  can  cause  the  cell  to  start  producing  proteins  (Structural  or   functional)   • Ex:   -­‐ Could  cause  the  cell  to  produce  actin  or  myosin  to  increase  muscle  mass   -­‐ Enzyme  produced  to  catalyze  a  reaction   -­‐ Protein  packaged  for  export  to  have  an  effect  somewhere  else   -­‐ Others   Slide  13  Hormone  Actions-­‐  Activate  or  deactivate  enzymes   • Hormones  can  activate  or  deactivate  enzymes  within  a  cell   • Can  cause  the  production  of  new  proteins  or  change  the  activity  of  existing   proteins  already  in  a  cell     Slide  14:  Hormone  Actions-­‐  Promote  secretion   • Hormone  binds  to  specific  receptor  on  target  cells  to  cause  them  to  start   secreting  thing  (Ex:  Mucous,  a  different  enzyme,  etc.)   Slide  15:  Hormone  Actions-­‐  Stimulate  mitosis   • Hormones  can  cause  cells  to  start  dividing  with  the  stimulation  of  mitosis  for   growth  to  occur   Slide  16  Hormonal  Mechanisms   • Steroid  Hormones:   -­‐ Produced  in  the  gonads  and  cortex  of  the  adrenal  gland   -­‐ Made  up  of  cholesterol  derivatives  making  this  group  fat  soluble  so  they   can  pass  across  the  plasma  membrane  unaided   -­‐ Therefore,  receptors  for  steroids  are  located  inside  of  the  cell  (Often   times  in  the  nucleus)   -­‐ Purpose:  Produce  new  proteins  via  direct  activation   • AA  Based  Hormones:   -­‐ Water  soluble  so  cannot  pass  through  the  plasma  membrane  of  the  cell   without  help   -­‐ Therefore,  the  receptors  are  located  on  the  exterior  surface  of  the  plasma   membrane  (Receptors  can  be  in  the  form  of  glycoproteins,  glycolipids,   etc.)   -­‐ When  the  AA  based  hormone  binds  to  the  receptor,  it  requires  the  use  of   a  G  protein  to  activate  secondary  messengers   -­‐ More  specifically:  The  AA  based  hormone  binds  to  the  receptor  on  the   surface  of  a  cell  (Usually  an  integral  protein)  and  it  has  a  secondary   peripheral  protein  on  the  inside  of  the  cell  à  So  when  the  AA  based   hormone  binds  to  the  receptor  it  activates  the  G  protein  that  activates   something  inside  the  cell  to  cause  some  activity  (Via  secondary   messenger)  à  This  means  that  AA  based  hormones  do  NOT  provided   direct  activation     Slide  17:  Steroid  Action  Video   Slide  18:  Steroid  Action   • When  stress  (or  another  type  of  stimuli)  is  applied  to  the  body,  an  endocrine   gland  (In  this  case,  a  gonad  or  adrenal  gland)  produces  a  secretion  that  goes   into  the  blood  stream  where  it  encounters  a  cell  with  its  specific  receptor  and   then  diffuses  across  the  membrane     • With  steroid  hormone  activity,  the  hormone  diffuses  across  the  plasma   membrane  and  binds  with  the  intracellular  receptor     • (If  there  isn’t  a  receptor  inside  the  cell,  the  steroid  hormone  crosses  back  out   of  the  cell  and  won’t  have  any  effect  on  it)   • When  the  steroid  hormone  binds  to  the  receptor,  the  complex  is  now   activated  which  will  then  bind  to  a  second  receptor  that  is  located  on  the   DNA  inside  the  nucleus   • When  the  activated  complex  binds  to  the  DNA,  it  acts  as  a  promoter  and   starts  transcription  (Taking  gene  and  using  genetic  code  to  produce  mRNA  to   then  be  translated  and  go  out  of  the  nucleus  and  find  the  ribosome  to  begin   producing  the  protein)  à  Demonstrates  direct  activation  of  protein   production  by  steroid  hormones   • Note:  the  receptor  for  the  steroid  hormone  could  also  be  located  in  the   cytoplasm  which  then  can  cross  into  the  nucleus  and  bind  to  the  DNA   activator  which  then  causes  the  cascade  of  the  production  of  a  protein   (Transcription  and  translation  processes,  more  specifically)   Slide  19:  Non-­‐Steroid  Action  (Include  AA  based  hormones)  Video   • AA  based  hormones  attach  to  specific  receptors  on  the  surface  of  the  cell  that   use  secondary  messenger  mechanisms  to  change  the  activity  of  the  cell     • Note:  Most  of  the  hormones  produced  in  our  body  are  non-­‐steroid   Slide  20:  Non-­‐Steroid  Action  (2  Mechanisms)   • Cyclic  AMP  Mechanism:  Cyclic  AMP  is  the  secondary  messenger  to  cause   something  to  happen  in  the  cell   • PIP-­‐Calcium  Mechanism:  PIP  causes  something  to  happen  in  the  cell  and  then   calcium  follows  with  its  effect   • The  benefit  of  second  messenger  signaling  is  the  amplification  that  occurs   inside  of  the  cells;  small  amounts  of  signal  create  a  large  response— Secondary  messengers  do  not  have  to  do  with  conducting  a  rapid  response   with  communication     Slide  21:  Cyclic  AMP  Mechanism     • Hormone  binds  to  a  receptor  located  on  the  exterior  surface  of  the  plasma   membrane,  which  modifies  the  receptor   • A  second  protein  associated  with  the  now  modified  receptor  known  as  a  G   protein  is  activated     • The  activated  G  protein  is  used  to  activate  adenylate  cyclase,  which  is  an   enzyme  that  causes  the  production  of  cyclic  AMP  (cAMP)  from  ATP     • cAMP  then  stimulates  the  protein  kinases  enzymes,  which  phosphorylate   proteins  (Addition  of  a  phosphate  group  to  a  protein)   • Phosphorylation  by  protein  kinases  to  already  existing  proteins  inside  the   cells  either  1)  Activates  the  protein  or  2)  Deactivates  the  protein     • At  some  point,  it  will  be  necessary  to  have  a  way  to  break  down  cAMP  à   Occurs  through  phosphodiesterase  (Hormone  response  has  a  duration  time)   • Overall  idea:  This  mechanism  demonstrates  that  only  one  hormone  affected   the  cell  but  it  causes  hundreds  of  different  responses  due  to  the  effect  of   changing  the  proteins  inside  the  cell  to  be  either  turned  on  or  off   Slide  22:  PIP-­‐Calcium  Mechanism   • Hormone  binds  to  the  membrane  bound  receptor,  which  becomes  the   modified  receptor  and  activates  the  G  protein   • The  activated  G  protein  causes  the  activation  of  phospholipase  (PLP)  inside   the  cell,  which  splits  PIP2  into  DAG  and  IP3   • DAG  activates  protein  kinases,  which  phosphorylate  proteins     • IP3  causes  calcium  to  be  released  from  the  ER  in  the  cell,  which  can  act  as   another  secondary  messenger  to  be  released  to  promote  other  changes  in   cellular  activity     Slide  23:  Factors  Affecting  Hormone  Action     • Hormonal  activity  is  affected  by  the  amount  of  hormones  circulating  in  the   blood  stream  à  The  higher  the  concentration,  the  higher  the  response  to  the   hormones   • The  human  body  is  capable  of  adapting  to  stress  (For  example)  through:   1) Up  regulation  in  the  number  of  receptors  as  a  result  so  that  there  will  be  a   greater  hormonal  response  with  continued  stress  à  More  receptors   allows  for  more  binding  of  the  specific  hormones  that  produce  the   necessary  proteins   2) High  levels  of  stress  can  also  cause  the  number  of  receptors  on  target   cells  to  be  reduced  if  that  particular  hormone’s  response  is  not  needed  à   Decreased  numbers  of  receptors  leads  to  decreased  response  to  that   hormone   3) Receptor  Affinity:  Can  change  the  way  the  receptor  binds  to  the   hormone—Ex:  May  be  necessary  for  an  increase  in  speed  in  the  response   of  a  hormone  on  a  cell  and  body  can  accompany  this  need   • Hormone  producing  structures  can  be  working  at  the  same  time  so   hormones  are  able  to  interact  amongst  themselves  as  a  result   Slide  24:  Hormone  Interactions     • Permissiveness:   -­‐ A  hormone,  such  as  FSH  (Follicle-­‐Stimulating  Hormone),  will  affect   reproductive  development  so  that  as  it  is  secreted  it  will  cause   development  of  the  reproductive  organisms  but  if  there  are  higher  levels   of  thyroid  hormone  present,  for  example,  FSH  will  have  a  greater  effect     -­‐ In  this  example,  thyroid  hormone  isn’t  necessary  for  FSH  to  work   properly,  but  it  enhances  FSH’s  effect   • Synergism:   -­‐ When  more  than  one  hormone  produces  the  same  effect  so  when  that   when  these  multiple  hormones  are  present  together,  a  greater  effect  is   experienced   -­‐ Ex:  Glucagon  and  epinephrine  both  increase  blood  glucose  levels  and   together,  this  is  experienced  even  more   • Antagonism:   -­‐ Hormones  that  have  opposite  effects   -­‐ Ex:  Insulin  vs.  glucagon     Slide  25:  Modes  of  Endocrine  Gland  Stimulation   • Humoral:  (Humors  are  liquids)   -­‐ Concentrations  of  something  in  the  blood  stream  can  stimulate  endocrine   secretions   -­‐ Ex:  Increase  in  blood  sugar  level  can  cause  the  pancreas  to  produce   insulin  in  order  for  cells  to  take  up  glucose  and  reduce  the  concentrations   in  the  blood  stream     • Neural:   -­‐ Nervous  impulses  directly  stimulate  glands  to  start  producing  hormones     -­‐ Ex:  Sympathetic  nervous  stimulation  of  the  adrenal  gland  causes  the   production  of  epinephrine     • Hormonal:   -­‐  Hormones  in  the  blood  stream  bind  to  target  cell  to  cause  it  to  produce   another  hormone   • Modified  by  Nervous  System:   -­‐  The  previously  discussed  modes  of  endocrine  gland  stimulation  can  be  fine   tuned  by  nervous  system  activity  because  the  endocrine  and  nervous  system   work  together   • Inhibited  by  negative  feedback:   -­‐ Most  hormones  will  function  through  negative  feedback  mechanisms     -­‐ Ex:  Stress  causes  the  hormone  to  be  released  to  reduce  stress  and  once   the  stress  is  successfully  reduced,  the  hormone  will  be  shut  off   • Both  "turn  on"  factors  (hormonal,  humoral,  and  neural  stimuli)  and  "turn  off"   factors  (feedback  inhibition  and  others)  may  be  modulated  by  the  activity  of   the  nervous  system   Slide  26:  Endocrine  Glands   • Pituitary   • Thyroid   • Parathyroids   • Adrenals   • Pancreas   • Gonads   • Pineal   • Thymus   Slide  27:  Pituitary  Gland  (Hypophysis)   • The  pituitary  gland  (hypophysis)  is  divided  into  the  anterior  and  posterior   pituitary     • The  pituitary  gland  extends  off  of  the  hypothalamus  via  what  is  called  the   infundibulum  =  pituitary  gland’s  funnel-­‐shaped  stalk       • The  posterior  pituitary  gland  (neurohypophysis)  is  comprised  of  nervous   tissue   -­‐ Does  NOT  produce  hormones  but  instead  is  responsible  for  storing   hormones  made  originally  in  the  hypothalamus   -­‐ Releases  the  hormones  into  circulation  when  signaled  to  do  so  by  the   hypothalamus   • The  anterior  pituitary  gland  (adenohypophysis)  is  not  directly  part  of  the   nervous  brain  but  it  is  fused  to  neural  tissue  of  the  posterior  pituitary  gland   -­‐ Made  up  of  glandular  tissue,  which  is  secretory  tissue     -­‐ Starts  out  as  out-­‐pouching  (Rathke’s  pouch)  of  the  oral  cavity  and  this   piece  breaks  off  the  oral  cavity  and  travels  until  it  comes  in  contact  with   neural  tissue  and  fuses  together     -­‐ Produces  many  hormones   • Both  the  hypothalamus  and  anterior  pituitary  gland  produce  hormones  à   -­‐ The  hypothalamus  sends  the  produced  hormones  to  the  posterior   pituitary  to  be  stored   -­‐ In  terms  of  regulation  of  the  anterior  pituitary  gland,  the  hypothalamus   sends  releasing  or  inhibiting  hormone  that  tell  the  anterior  pituitary  to   release  or  not  to  release  the  hormones  it  has  produced     • The  connection  between  the  anterior  and  posterior  pituitary  =  blood  vessels     Slide  28:  Neurohypophyseal  (Posterior  Pituitary  Gland)  Hormones   • Oxytocin   • Antidiuretic  Hormone  (ADH)   • Both  are  AA  based  hormones  and  use  the  PIP-­‐calcium  mechanism  à  Activate   proteins  that  are  already  inside  cells     Slide  29:  Oxytocin  (Posterior  Pituitary  Gland)   • Stimulates  smooth  muscle  contraction  à  Childbirth,  milk  ejection   • Promotes  the  ejection  of  milk  (NOT  production  but  the  release  itself)   • Example  of  its  involvement  in  a  positive  feedback  mechanism:  Giving  birth  to   an  infant  à  Stimulation  of  the  contraction  of  muscles  in  labor,  increase  in   pressure,  baby  pushed  out  and  released   • Involved  with  sexual  arousal  and  satisfaction  à  Associated  with  climax   response   • High  levels  of  oxytocin  promote  nurturing  behavior;  This  is  seen  especially   immediately  after  the  mother  finishes  giving  birth  (“Cuddle  hormone”)   • NOT  produced  by  the  posterior  pituitary  gland  itself     Slide  30:  Anti-­‐Diuretic  Hormone  (Posterior  Pituitary  Gland)   • Regulates  water  balance  by  affecting  the  kidney  tubules  and  prevent  urine   formation   • The  kidneys  are  caused  by  ADH  to  absorb  water  so  that  it  goes  back  into   circulation  to  reduce  urine  production   • Important  to  monitor  tonicity  of  blood  as  a  result  of  this     • Alcohol  suppresses  ADH  à  Leads  to  release  of  lot  of  fluids  that  cause   dehydration     • NOT  produced  by  the  posterior  pituitary  gland  itself     Slide  31:  Adenohypophyseal  (Anterior  Pituitary  Gland)  Hormones   • Growthy  Hormone  (GH)   • Thyroid-­‐Stimulating  Hormone  (TSH)   • Adenocorticotropic  Hormone  (ACTH)   • Gonadotropins:  FSH  (Follicle-­‐Stimulating  Hormone)  and  LH  (Luteinizing   Hormone)   • Prolactin   • Pro-­‐opiomelanocortin  (POMC):       -­‐ A  “pro-­‐hormone,”  meaning  it  is  a  precursor  to  become  a  hormone   -­‐ “Opio”  =  Opiate  that  is  involved  with  pleasure  reception,  pain,  etc.     -­‐ Melanocortin  affects  melanocytes  that  produce  melanin  and  involved  in   UV  radiation     • All  of  these  hormones  are  AA  based  and  use  the  cyclic  AMP  mechanism     Slide  32:  Tropic  Hormones   • Tropic  comes  from  the  Greek  word  “trephein”  =  “to  nourish”   • Tropic  hormone  is  a  hormone  whose  target  cells  are  other  endocrine  glands   so  that  it  causes  the  production  of  another  hormone       1/14/16  Notes  (Endocrine  System  continued)     Slide  33:  GH  (Growth  Hormone)   • GH  is  an  anabolic  hormone  that  builds  tissue  (Seen  with  muscle  and  bone   tissue  for  example)   • GH  stimulates  cell  growth  and  division,  protein  synthesis,  fat  metabolism  and   glucose  conservation   • GH’s  target  cell  could  be  skeletal  muscle,  for  example,  and  when  it  binds  to   the  receptor  it  stimulates  the  production  of  myosin/actin,  which  make  the   muscle  larger     • With  increasing  glucose  concentrations  and  storing  glucose,  the  cells  get   bigger  inclusions  as  a  result   • GH  Malfunctions:     -­‐ Pituitary  Dwarfism:  Insufficient  concentrations  of  GH  lead  to  smaller  and   maintain  younger  looking  features   -­‐ Giantism:    Excess  concentrations  of  GH  lead  to  bigger  and  older  looking   features   -­‐ Acromegaly:  Where  GH  levels  are  normal  until  adulthood  where  an   excess  amount  is  produced  and  there  are  effects  of  enlargement  of  hands,   feet,  longer  face  etc.;  Simple  diagnostic  test:  Taking  had  and  putting   around  wrist  to  see  if  the  thumb  overlaps  the  fingers  by  a  great  extent       Slide  34:  GH  Cascade   • Cascade:  What  causes  the  anterior  pituitary  gland  to  start  producing   hormones  and  also  includes  what  shuts  it  back  off     -­‐ The  anterior  pituitary  is  generally  stimulated  by  the  hypothalamus  (But   not  always)  =  Chemical  hormonal  stimulus  to  cause  anterior  pituitary   cells  to  start  to  produce  the  wanted  hormone  (Example  of  the  hormonal   mechanism)   -­‐ Many  kinds  of  cells  are  in  the  anterior  pituitary  with  each  cell  having   different  receptors  and  responding  to  different  signals  from  the   hypothalamus   • GH  Cascade:   • The  hypothalamus  secretes  growth  hormone  releasing  hormone  (GHRH)  that   signals  the  somatotrope  cells  in  the  anterior  pituitary  gland  which  causes  the   production  of  GH  (On  switch)   • GH  is  released  then  by  the  anterior  pituitary  and  travels  in  the  blood  stream   to  affect  any  cells  with  the  GH  receptor     • GH  is  AA  based  so  it  binds  on  the  surface  of  the  cell  with  its  specific  receptor   and  then  causes  a  1)  Direct  effect  on  the  cell  or  2)  Indirect  effect  on  the  cell   through  use  of  a  secondary  component   • This  is  a  negative  feedback  system  so  as  GH  levels  increase  in  circulation,   growth  hormone  inhibiting  hormone  (GHIH)  is  triggered  which  shuts  off   GHRH  which  stops  GH  production     • GHIH  is  also  known  as  somatostatin  and  this  hormone  can  shut  off  other   hormones  too,  such  as  digestive  enzyme  production     Slide  35:  Direct  Actions  of  GH     • GH  that  is  released  from  the  anterior  pituitary  gland  travels  in  the  blood   stream  until  it  reaches  a  cell  with  its  specific  receptor  that  it  binds  to  and   causes  an  increase  in  blood  levels  of  fatty  acids  (FA)  à  This  means  that  fat  is   being  taken  out  of  storage  and  is  going  to  be  made  available  for  energy     • GH  decreases  cellular  uptake  of  glucose  so  that  it  is  kept  in  circulation    to  be   used  for  energy  elsewhere  instead  of  glucose  coming  out  of  the  blood  stream   to  be  stored  in  a  cell     • Glucose  and  FA  function  as  energy  sources  à  By  taking  fat  out  of  storage  and   preventing  glucose  from  being  stored,  energy  is  being  provided  for  the  body     • GH  encourages  the  breakdown  and  release  of  glucose  from  glycogen  in  the   liver  =  diabetogenic  effect  (Releasing  glucose  from  the  storage  of  glycogen)   • GH  demonstrates  the  changing  of  membrane  permeability  where  it  closes  off   the  in-­‐flow  of  glucose  into  cells  and  opens  up  the  out-­‐flow  of  glucose  out  of   cells  so  that  more  energy  is  available  and  is  in  circulation     Slide  36:  Indirect  Actions  of  GH   • Indirect  actions  of  GH  function  through  IGF  (Insulin-­‐like  Growth  Factors)   • IGFs  are  produced  by  the  liver  and  require  GH  presence  for  activity     • GH  stimulates  an  increase  in  IGFs  by  the  liver   • GH  binds  to  IGFs  and  stimulates  the  uptake  of  AA  from  the  blood  into  cells   that  stimulates  protein  synthesis     • GH  stimulates  uptake  of  sulfur  through  IGF  binding  which  is  important  for   making  the  matrix  of  cartilage  à  In  an  embryo,  when  cartilage  matrix  is   being  made,  this  is  the  foundation  for  where  bone  comes  from  and  in  order  to   do  this,  the  GH  has  to  interact  with  IGF   Slide  37:  TSH  (Thyroid  Stimulating  Hormone)   • TSH  is  produced  by  the  anterior  pituitary  gland   • Stimulates  the  development  of  the  thyroid  gland  and  secretion  from  the   thyroid  gland     Slide  38:  TSH  Cascade   • The  hypothalamus  secretes  TRH  (Thyrotropin  Releasing  Hormone)  which   stimulates  the  thyrotrope  cells  of  the  anterior  pituitary  gland  which  produces   TSH  (Thyrotropin)  and  secretes  it  into  the  blood  stream  to  bind  to  specific   receptors   • High  levels  of  TSH  inhibit  the  pituitary  gland  and  hypothalamuas  and  it  also   stimulates  the  production  of  GHIH  which  blocks  the  production  of  TRH  and   therefore  the  production  of  TSH     Slide  39:  ACTH  (Adrenocorticotropic  Hormone)   • ACTH  is  an  AA  based  hormone  that  stimulates  the  adrenal  cortex  to  secrete   its  steroid  based  hormones  (corticosteroids)  using  the  cyclic  AMP   mechanism     • The  adrenal  gland  produces  3  classes  of  steroid  hormones  and  of  these  3,   ACTH  primarily  causes  the  production  of  mostly  glucocorticoids     • All  of  the  steroids  that  are  secreted  by  the  adrenal  cortex  help  the  body   relieve  stresses  (Ex:  Fever,  blood  pressure,  external  stresses,  etc.)   Slide  40:  ACTH  Cascade   • The  hypothalamus  secretes  CRH  (Corticotropin  Releasing  Hormone)  which   stimulates  the  corticotrope  cells  of  the  anterior  pituitary  gland  to   release/produce  ACTH  which  binds  to  receptors  on  cells  of  the  adrenal   cortex  where  the  production  of  glucocorticoids  primarily  occurs   • Increased  levels  of  glucocorticoids  shut  off  CRH  which  stops  the  production   of  ACTH  which  stops  the  production  of  glucocorticoids   • Fever,  hypoglycemia,  and  other  stressors  cause  CRH  to  be  produced  in  the   hypothalamus     Slide  41:  Gonadotropins     • Gonadotropins  are  anterior  pituitary  gland  secretions  that  help  regulate  and   develop  the  functioning  of  the  gonads  (Ovaries/testes)   • 2  types  of  gonadotropins:     a) FSH  (Follicle-­‐Stimulating  Hormone):  Stimulates  the  production  of   gametes  (Sex  cells-­‐  sperm/eggs)   b) LH  (Luteinizing  Hormone):  Stimulates  the  production  of  gonadal   hormones  (Testosterone,  estrogen,  progesterone)   Slide  42:  Male     • FSH:  Stimulates  sperm  production   • LH:  Stimulates  production  of  testosterone,  which  is  produced  in  the  tests  by   the  interstitial  cells     • Testes:  Produce  gametes  (sperm)  and  testosterone   Slide  43:  Female   • FSH:  Stimulates  production  of  ova  (eggs)  =  gametes   -­‐ Women  are  born  with  all  the  gametes  that  are  going  to  be  produced  in  the   ovaries  which  means  that  FSH  is  producing  the  ova  prior  to  birth  and  the   ova  are  then  maintained  in  the  follicles   -­‐ Normally  3-­‐5  follicles  develop  each  month  with  normally  one  finishing   development  in  making  it  into  a  mature  egg     • LH:  Triggers  ovulation  and  development  of  the  female  sex  hormones   (estrogen  and  progesterone)   • After  puberty,  the  FSH  and  LH  work  together  to  cause  maturation  of  some  of   the  ova  in  the  follicles,  cyclically     Slide  44:  Gonadotropin  Cascade   • At  puberty,  the  hypothalamus  secretes  GnRH  (Gonadotropin  Releasing   Hormone)  that  stimulate  the  gonadotrope  cells  of  the  anterior  pituitary  gland   to  secrete  FSH  and  LH   • FSH  and  LH  cause  the  gonads  to  mature  and  produce  their  own  hormones     • The  production  of  these  hormones  by  the  gonads  are  then  what  shut  off  the   production  of  LH  and  FSH  when  there  are  increased  levels     Slide  45:  Prolactin  (PRL)   • Prolactin  stimulates  the  breasts  to  produce  milk     • Oxytocin  and  prolactin  are  associated  with  lactation     • Prolactin  may  enhance  testosterone  production  in  males  (But  they  don’t   produce  much)   Slide  46:  Prolactin  Cascade  (Cycling)   • During  a  woman’s  cycle,  an  ovum  begins  to  develop  in  the  ovary  and  as  the   follicle  where  the  ovum  is  located  in  matures,  this  causes  an  increase  in   estrogen  and  this  causes  prolactin  to  be  released  form  the  lactotrope  cells  of   the  anterior  pituitary  gland   • Key  to  understand  that  a  chemical  is  NOT  being  released  from  the   hypothalamus  to  stimulate  prolactin  release  from  the  lactotropes—It  is  high   estrogen  levels  that  stimulate  the  lactotropes  to  secrete  prolactin  by   suppressing  PIH  (Prolactin  Inhibiting  Hormone)  production     • Decreased  estrogen  levels  stimulate  PIH  production  from  the  hypothalamus     • Prolactin  production  then  stops  from  the  lactotropes   Slide  47:  Prolactin  Cascade  (Pregnant)   • PIH  is  produced  by  the  hypothalamus  and  high  estrogen  levels  causes   suppression  of  PIH  in  order  to  start  the  production  of  prolactin  from  the   lactotropes  in  the  anterior  pituitary  gland   • Estrogen  levels  don’t  get  very  high  until  the  end  of  pregnancy  so  then  the   production  of  milk  begins  at  this  point   • Oxytocin  then  kicks  in  to  deliver  the  baby  and  milk  is  released  here   • Suckling  is  what  maintains  the  production  of  prolactin  so  as  long  as  breast   feeding  is  occurring,  prolactin  is  being  produced   • When  the  mother  weans  the  baby  and  the  suckling  stops,  the  PIH  is  produced   by  hypothalamus  and  prolactin  production  stops      


Buy Material

Are you sure you want to buy this material for

0 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Jennifer McGill UCSF Med School

"Selling my MCAT study guides and notes has been a great source of side revenue while I'm in school. Some months I'm making over $500! Plus, it makes me happy knowing that I'm helping future med students with their MCAT."

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.