New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Physics 2080 Chapter 18: Thermodynamics Notes

by: Amanda Biddlecome

Physics 2080 Chapter 18: Thermodynamics Notes Physics 2080

Marketplace > Clemson University > Physics 2 > Physics 2080 > Physics 2080 Chapter 18 Thermodynamics Notes
Amanda Biddlecome
GPA 4.0
View Full Document for 0 Karma

View Full Document


Unlock These Notes for FREE

Enter your email below and we will instantly email you these Notes for General Physics 2

(Limited time offer)

Unlock Notes

Already have a StudySoup account? Login here

Unlock FREE Class Notes

Enter your email below to receive General Physics 2 notes

Everyone needs better class notes. Enter your email and we will send you notes for this class for free.

Unlock FREE notes

About this Document

These notes cover all over Chapter 18 which is a chapter all about the Laws of Thermodynamics.
General Physics 2
Dr. Pope
Class Notes




Popular in General Physics 2

Popular in Physics 2

This 4 page Class Notes was uploaded by Amanda Biddlecome on Thursday January 21, 2016. The Class Notes belongs to Physics 2080 at Clemson University taught by Dr. Pope in Fall 2016. Since its upload, it has received 31 views. For similar materials see General Physics 2 in Physics 2 at Clemson University.


Reviews for Physics 2080 Chapter 18: Thermodynamics Notes


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 01/21/16
Physics  2080   Chapter  18:  Laws  of  Thermodynamics   January  19,  2016   Amanda  Biddlecome     1)  Zeroth  Law  of  Thermodynamics     -­‐Object  A  and  B  are  in  thermal  equilibrium  when  they  are  in  thermal  contact.     Object  B  and  C  are  in  thermal  equilibrium  when  they  are  in  thermal  contact.     Therefore,  if  objects  A  and  C  are  brought  into  thermal  contact,  they  will  be  in     thermal  equilibrium.         *thermal  equilibrium  means  they  are  at  the  same  temperature  and  no         heat  is  being  transferred     2)  First  Law  of  Thermodynamics     -­‐conservation  of  energy     -­‐Constant  Volume       *heat  is  added  and  internal  energy  increases       ΔU=U -­‐U=Q  f i *Q=heat  added     U=internal  energy         *internal  energy  decreases  when  the  system  does  work  on  the           environment  and  no  heat  is  added       ΔU=U -­‐U=-­‐W f   i     -­‐Combine  these  two  equations  to  get  the  First  Law  of  Thermodynamics     ΔU=Q-­‐W   *signs  are  important   *Q=(+)  when  the  system  gains  heat  and  (-­‐)  when  the  system  loses  heat   *W=(+)  when  work  is  done  by  the  system  and  (-­‐)  when  work  is  done  on  the  system   *read  the  problems  carefully  to  determine  signs       -­‐internal  energy  depends  on  the  temperature     -­‐the  heat  added/lost  and  the  work  done  depend  on  the  process  that  the     change  comes  through         *PV  Diagrams  and  processes     -­‐assume  the  system  is  quasi-­‐static         *in  thermal  equilibrium     -­‐and  assume  all  processes  are  reversible       *reversible  systems  don’t  actually  exist  but  they  give  us  a  close           mechanism  to  model         *to  be  reversible,  the  system  and  environment  have  to  return  to  what         they  were  originally       -­‐idealized  reversible  processes       *don’t  exist  but  give  us  a  good  idea  of  what’s  happening         *what  we  use  in  physics       -­‐Work  done  with  an  expanding  volume  and  constant  pressure     W=PΔV=NkT=nRT   *W=work     *P=pressure   *ΔV=change  in  volume         -­‐Work=the  area  under  the  curve  of  a  PV  Diagram       -­‐Constant  volume  and  changing  pressure  give  no  work  because  there’s  no     movement  happening       *on  the  PV  Diagram,  there’s  a  vertical  line  and  no  area  under  the  line       -­‐if  temperature  is  constant,  pressure  varies  inversely  with  volume       *find  work  under  this  curve  by  this  formula:       W=NkTln(V /V)=nRTln(V /V)   f i f i *W=work   *N=number  of  molecules   *k=Boltzmann’s  Constant  (1.38X10 )   -­‐23 *T=temperature   *V =fifal  volume  on  the  pv  diagram     *V=iniiial  volume  on  the  pv  diagram     *n=number  of  moles   *R=Ideal  Gas  Constant  (8.31)   *ln=natural  log       -­‐Free  Expansion  is  when  no  work  is  done  and  no  heat  is  exchange,  therefore     there  is  no  change  in  internal  energy         *irreversible         *neither  adiabatic  or  isothermal     -­‐Adiabatic  Processes  happen  when  no  heat  is  exchanged         *temperature,  pressure,  and  volume  all  change       *to  make  sure  a  system  is  adiabatic,  you  can  insolate  the  system,  or         you  can  make  the  reaction  happen  very  rapidly       3)  Specific  Heats     -­‐specific  heats  have  to  be  found  at  either  constant  volume  or  constant     pressure           Q =vC ΔT  v C v(3/2)R   *Q =heat  at  constant  volume   v *n=number  of  moles     *C =vpecific  heat  at  constant  volume     *ΔT=change  in  temperature     *R=Ideal  Gas  Constant     Q =pC ΔT  p C p(5/2)R   *Q =hpat  at  constant  pressure   *n=number  of  moles   *C =specific  heat  at  constant  pressure   *ΔT=change  in  temperature   *R=Ideal  Gas  Constant     γ=(C /C )p(5/3)v   PVi i(5/3) =P V f f(5/3)   *γ=Gamma   *P=pressure   *V=volume     4)  Second  Law  of  Thermodynamics       -­‐heat  only  flows  SPONTANEOUSLY  from  hot  to  cold  but  we  can  MAKE  it  flow     from  cold  to  hot         *use  a  heat  engine  to  convert  heat  into  work  (happens  because  of  a         temperature  difference  between  different  parts  of  the  engine)     -­‐Heat  Engine       *Heat  (Q ) his  supplied  at  high  temperatures  from  the  hot  reservoir       *part  of  that  heat  is  used  to  do  work  and  the  rest  is  rejected  and  sent         to  the  cold  reservoir  as  cold  heat  (Q )   c   Q hW+Q   c *W=magnitude  of  work  done   *Q =hhgh  temperature  heat   *Q =ccld  temperature  heat         *efficiency  is  the  fraction  of  the  heat  supplied  that  appears  as  work     e=1-­‐(Q /Q )c   h *e=efficiency           *Carnot’s  Principle  says  that  no  engine  that  we  have  can  be  more         efficient  than  a  reversible  engine  and  those  don’t  exist,  so  we  measure       efficiency  by  looking  at  the  temperature         *Lord  Kelvin  said  there’s  a  relationship  between  the  ratio  of  heat  and         the  ratio  of  temperature     (Q /c )=(Th/T )   c h *Q =cold  reservoir  heat   *Q =hht  reservoir  heat   *T =cold  temperature   *T =hot  temperature     e carnot =1-­‐(T /Tc)  h *e=maximum  efficiency  possible     *T c  and  T h  are  always  in  Kelvin       W max =e max Q =h1-­‐(T /T )]c  h h *W max =maximum  work  possible     *e max =maximum  efficiency           *if  both  temperatures  are  the  same,  we  won’t  be  able  to  do  any  work     -­‐heat  engines  can  go  from  hot  to  cold  or  from  cold  to  hot         *refrigerators  work  this  way       *the  system  uses  electricity  to  extract  heat  from  the  cold  reservoir         (inside  the  refrigerator)  and  pump  it  out  into  the  hot  reservoir  (the         room),  making  the  hot  reservoir  even  hotter       -­‐Heat  Pumps       *extract  heat  from  cold  air       *when  it’s  really  cold  out,  these  don’t  work  very  well       *can  change  which  reservoir  is  the  supplier  of  hot  and  cold         *the  Coefficient  of  Performance  for  cooling     COP max =T /(c -­‐T )hQ /Wc   c *COP max =coefficient  of  performance  maximum           *the  Coefficient  of  Performance  for  heating       COP max =T /(h -­‐T )hQ /Wc   h   5)  Third  Law  of  Thermodynamics     -­‐Absolute  0  is  a  temperature  that  materials  can  get  very,  very  close  to,  but       never  all  the  way  that  cold         *Absolute  0  is  impossible  because  of  energy  input    


Buy Material

Are you sure you want to buy this material for

0 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Kyle Maynard Purdue

"When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the I made $280 on my first study guide!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.