×

### Let's log you in.

or

Don't have a StudySoup account? Create one here!

×

or

## PHIL 1313 Week 3 Notes (Plus Cheat Sheet!)

by: Colleen Maher

13

0

9

# PHIL 1313 Week 3 Notes (Plus Cheat Sheet!) PHIL 1313-002

Marketplace > Oklahoma State University > PHIL-Philosophy > PHIL 1313-002 > PHIL 1313 Week 3 Notes Plus Cheat Sheet
Colleen Maher
OK State

Get a free preview of these Notes, just enter your email below.

×
Unlock Preview

The handwritten notes are from his lecture on monday, 1/25. THe Truth Chart doc is over the 6.2 reading on D2L, and the Cheat Sheet includes a lot of the stuff we've gone over so far.
COURSE
Logic and Critical Thinking
PROF.
Justin Rice
TYPE
Class Notes
PAGES
9
WORDS
CONCEPTS
logic, truth charts, cheat sheet, Reading, Propositional Logic
KARMA
25 ?

## Popular in PHIL-Philosophy

This 9 page Class Notes was uploaded by Colleen Maher on Thursday January 21, 2016. The Class Notes belongs to PHIL 1313-002 at Oklahoma State University taught by Justin Rice in Spring 2016. Since its upload, it has received 13 views. For similar materials see Logic and Critical Thinking in PHIL-Philosophy at Oklahoma State University.

×

## Reviews for PHIL 1313 Week 3 Notes (Plus Cheat Sheet!)

×

×

### What is Karma?

#### You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 01/21/16
Operator Name Compound Type Used to translate ~ Tilde Negation it is not the case  that .  dot Conjunction and; also;  moreover v wedge disjunction or; unless ⊃ horseshoe conditional if…then…; only if <­> (or triple bar) Triple bar biconditional if and only if NEGATION, CONJUNCTION, DISJUNCTION  Not either A or B = ~(A v B)  Either not A or not B = ~A v ~B  Not both A and B = ~(A ● B)  Both not A and not B = ~A ● ~ B  Neither A nor B = ~(A v B)  Either A or B is not ___ = ~A v ~B  Not A, but B = ~A ● B  Both A and B are not ___ = ~A V ~B NECESSARY AND SUFFICIENT CONDITIONS 1. A is a sufficient condition for B whenever the occurrence of A is all that is  required for B. 2. A is a sufficient condition for B whenever B cannot occur without A. 3. Sufficient introduced the antecedent; Necessary introduces the  consequent.  TRUTH  T T T CHARTS NEGATION T F F p ~p F T T T F F F T DISJUNCTION F T p q p v q CONJUNCTIONS: T T T BICONDITIONAL p  q p <-> q p q p . q T F T T T T T T T F T T T F F T F F F F F F T F F T F F F F CONDITIONAL F F T p  q p ⊃ q Truth Charts Hey guys! This looks really complicated, but I promise it’s not. The truth charts will always look something like this: a b axb T T X F X F F X F T X The lowercase letters stand for statements, and the uppercase letters are for  True or False. (The Xs are just placeholders) Let’s start with negations: p ~p T F F T The truth table for negation will always look like this, so you don’t have to worry.  How you read it is “If p is true, ~p is false.” You follow the letter down the chart.  So, if ~p is true, p is false. Negations are simple like that. EX) Let’s just say that it’s true that I like cats (and it is).  p = I like cats. (true) then we negate it: ~p = I do not like cats. (false (and super sad!)) Likewise, if it was true that I didn’t like cats, it would be false to say I did.  You follow me?  CONJUNCTIONS: p q p . q T T T T F F F T F F F F For conjunctions, F IS A DISEASE! *gasp!* And it makes sense when you think  about it.  p = April has a three legged dog. (true) q = Andy has a three­legged dog. (Also true) p . q = April and Andy have a three­legged dog. (True to the max) See how this follows the first section of the table? But let’s say April has a three­legged cat. Then p would be false, which would make the whole statement false. Easy, right? DISJUNCTION p q p v q T T T T F T F T T F F F As you can see, disjunction is a little different than conjunction. This is because  when you say an “or” statement, you’re saying “this could be OR this could be.”  They don’t depend on each other to be true.  p = Frodo will throw the ring in the volcano. q = Samwise will throw the ring in the volcano.  p v q = Frodo or Samwise will throw the ring in the volcano.  No matter which of the statements is true, that ring is still getting chucked into a  volcano. The only way it wouldn’t be is if BOTH statements were false. Then the  whole thing would be false and they couldn’t defeat Sauron.  Just FYI, and exclusive disjunction means that ONLY ONE of the simple  statement could be true. These usually have the word either in them  EX) Bilbo is either eleventy­seven or eleventy­eight.  CONDITIONAL p  q p ⊃ q T T T T F F F T T F F T p = If Elinor marries Edward, (q = ) then Marianne marries Colonel Brandon.  Both of these happen to be true, so the conditional is true. If Marianne had  married Willoughby, then the antecedent wouldn’t be satisfied and the conditional would be false. If Elinor had run away and become a nun, Marianne would still be married to Colonel Brandon, so the result would still be true. If neither p nor q is  true, the result is still true. This is difficult to explain here, but if you read page  326 of the reading, it becomes clearer.  Alan Rickman! </3 BICONDITIONAL p  q p <-> q T T T T F F F T F F F T (The <­> stands in for the triple bar) This one is very similar to the conditional, with the exception of the second to last row, which tells us that id the antecedent is false, the conclusion will be false  because the conditions have not been met.  Well guys, that was fun! I hope you understand it at least slightly now. Have fun  on the quiz Friday!

×

×

### BOOM! Enjoy Your Free Notes!

×

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

## Why people love StudySoup

Bentley McCaw University of Florida

#### "I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Kyle Maynard Purdue

#### "When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the material...plus I made \$280 on my first study guide!"

Steve Martinelli UC Los Angeles

Forbes

#### "Their 'Elite Notetakers' are making over \$1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!
×

### Refund Policy

#### STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

#### STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com