New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

PSYCH50 Chapters 1-2

by: Emily Wu

PSYCH50 Chapters 1-2 PSYCH 50

Marketplace > Stanford University > Psychlogy > PSYCH 50 > PSYCH50 Chapters 1 2
Emily Wu
GPA 4.105
View Full Document for 0 Karma

View Full Document


Unlock These Notes for FREE

Enter your email below and we will instantly email you these Notes for Intro to Cognitive Neuroscience

(Limited time offer)

Unlock Notes

Already have a StudySoup account? Login here

Unlock FREE Class Notes

Enter your email below to receive Intro to Cognitive Neuroscience notes

Everyone needs better class notes. Enter your email and we will send you notes for this class for free.

Unlock FREE notes

About this Document

These notes cover chapters 1-2 of "The Principles of Cognitive Neuroscience" which address the basic themes of cognitive neuroscience (chapter 1) and the methods we used to study cognitive neurosci...
Intro to Cognitive Neuroscience
Justin Gardner
Class Notes
Cognitive Neuroscience, Psychology




Popular in Intro to Cognitive Neuroscience

Popular in Psychlogy

This 7 page Class Notes was uploaded by Emily Wu on Thursday January 21, 2016. The Class Notes belongs to PSYCH 50 at Stanford University taught by Justin Gardner in Winter 2016. Since its upload, it has received 233 views. For similar materials see Intro to Cognitive Neuroscience in Psychlogy at Stanford University.

Similar to PSYCH 50 at Stanford

Popular in Psychlogy


Reviews for PSYCH50 Chapters 1-2


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 01/21/16
Emily Wu Chapter 1: Cognitive Neuroscience: Definitions, Themes, and  Approaches Cognition Cognition: set of processes that allow humans to ultimately generate thoughts and actions that  help reach desired goals ● many aspects of cognition occur subconsciously as reflex or automatically in the  background of current processing Natural philosophy and early psychology ● 19th century scientists addressed cognition through behavioral observation and  experiments Behaviorism ● behaviorism: emphasizes controlled experiments, objective external stimuli, and  measurable behavior ● dominated early 20th century because of dissatisfaction with lack of systematic  processes for studying cognition ● grounded psychology in objective experimental approach ● behaviorists: Watson and Skinner (reinforcement, learning, conditioning)  ● faults: ignored mental states and cognitive functions besides learning Cognitive science ● the research of mental processes­­arose mid­20th century ● Miller: people can represent about 7 items at a time in short term memory ○ memory is an active recoding of stimulus information, not a  passive representation ● Chomsky: says behaviorism can’t explain mental phenomena  ● cognitive models: describe underlying psychological processes and how sensory  input turns into behavioral output Neuroscience ● research of how nervous systems are organized and their function  ● Gall: phrenology, idea that cerebral cortex functions can be mapped by bumps  on skull ○ gave rise to idea of localization of function: different parts of brain → different processes ● Santiago Ramon y Cajal: identified neurons as separate cells in brain ○ signals transmitted along neuronal axons by action potentials ○ neurotransmitters: chemicals released at terminal of axons across  synapses, then bind to receptors on the next neuron  ● Penfield: mapped somatosensory cortex by stimulating brain areas of patients +  recording reported feeling  Cognitive Neuroscience: The Neurobiological Approach to Cognition Cognitive neuroscience: intersects cognitive science and neuroscience ● finding neural correlates: mapping brain regions activated during psychological  process ● understanding individual differences in cognitive abilities  Methods: Convergence and Complementarity Convergence: combines results of multiple experimental models to illustrate one concept ● ex: using results from multiple experiments to link area activation to a specific process → consistent activation of middle temporal lobe in many motion experiments Complementarity: combining research methods to provide a full account of brain  processes/image ● ex: use of fMRI, EEG, PET, TMS, etc. together  Emily Wu Chapter 2: The Methods of Cognitive Neuroscience ● approaches divided into two categories: a. study change in behavior when brain has been perturbed  b. measure brain activity while cognitive tasks are being performed Brain Perturbations 1. Stroke, trauma, or disease:  a. use of clinical­pathological correlation­­associating area of brain  lesion with changes in behavior and cognitive function i. cons: factors causing brain damage are not  controlled by experimenter, diaschisis: damaged area may cause another area to lose functioning b. lesion studies in animals → can control region of brain damage, but training/assessment animals to do cognitive tasks is difficult 2. Pharmacological: a. psychoactive drugs interfere with neurotransmitter release and  response  b. correlational: study cognitive changes of chronic drug abusers  c. experimental: administer drugs and record changes in functioning i. cons: lack of specificity of drug’s effects since drug  affects entire brain d. agonists: increase neurotransmitter release or receptor sensitivity  e. antagonists: decrease neurotransmitter release or receptor  sensitivity  3. Intracranial brain stimulation: a. electrodes placed onto brain of animal/human during surgery  b. moderate stimulation can activate neurons→ trigger behaviors c. strong stimulation can produce temporary but reversible “lesion” → disrupts neuron’s normal function 4. Extracranial brain stimulation:  a. transcranial magnetic stimulation (TMS): strong rapidly changing magnetic field generated over scalp to produce rapidly changing electrical current in brain tissue → disrupts neuronal functioning i. repetitive TMS (rTMS): series of TMS pulses  applied over several minutes ii. apply one TMS pulse at specific times → better temporal resolution b. cons: affects large area and limits specificity, delivered only to  superficial brain areas, uncomfortable   5. Optogenetics: a. insert genetic material to create light­sensitive ion channels b. ion channels open and close in response to light of specific  wavelength c. activate/inactivate neurons by opening/closing the ion channels and affecting their action potentials → change functioning of animal Measuring Neural Activity during Cognitive Processing 1. Direct electrophysiological recording a. measures action potentials produced by a single neuron  (“spiking”)  b. places electrodes extracellularly or intracellularly onto neuron c. data analyzed in two ways: i. peristimulus time histogram: plots neuronal firing  pattern against time in response to one stimulus that is repeatedly  produced­­each iteration is a trial ii. tuning curves: stimulus is presented in varying dimensions, neuronal response intensity is plotted → result is a curve illustrating which variation of the stimulus elicited strongest response 2. Electroencephalography (EEG) a. measures electrical brain waves with surface electrodes  b. measures dendritic field potentials: fluctuations in charge along  neuron’s dendrites when neuron receives synaptic input  c. local field potentials: a kind of dendritic field potential, but  fluctuations have slower frequency   3. Event­related potentials (ERPs) a. small voltage fluctuations in an EEG recording triggered by  sensory/cognitive events b. smaller than EEG data, so they must be averaged across trials to  extract from background “noise” of raw EEG data 4. Magnetoencephalography (MEG) a. magnetic version of EEG b. event­related magnetic­field responses (ERFs) extracted from  MEG same way as ERPs c. measures magnetic fields produced by the depolarization and  current flow of dendrites, rather than voltage fluctuations  d. sensitive to activity in sulci, insensitive to gyri  5. Positron emission tomography imaging (PET) a. increased neural activity=increased blood flow to area b. unstable isotopes injected into bloodstream and migrate towards  more metabolically active areas of brain c. decay of isotope emits positron → positron collides with electron → emits two gamma rays traveling in opposite direction → gamma ray detectors around subject’s head→ creates image of brain activity d. lower spatial resolution, no temporal resolution  e. requires blocked design: measure brain activity over extended  period of time as subject does task, then compare to activity measured over  period of time when subject is not doing task 6. Functional magnetic resonance imaging (fMRI) a. oxyhemoglobin and deoxyhemoglobin have different magnetic  resonance signals b. active brain areas use more oxygen → microvasculature increases blood flow to area, carrying oxyhemoglobin → deoxyhemoglobin concentration decreases → detection of blood  oxygenation level­dependent (BOLD) signal: magnetic resonance signal changes c. has enough temporal resolution for event­related design: measuring activity while stimulus is presented → can link behavioral measures to detected neural responses 7. Optical brain imaging: a. active brain tissue transmits/reflects light differently than inactive  tissue b. event­related optical signals (EROS): amount of light transmitted vs scattered varies based on electrically active tissue → light shined into brain → measure intensity of reflected light c. high temporal resolution, low spatial resolution  Using fMRI to analyze activation patterns within a brain area ● standard fMRI analysis obscures intervoxel differences  ● voxel: a value on a grid in 3D space, like a pixel on a bitmap  ● to address this problem: pattern classification  ○ multivoxel pattern analysis (MVPA): looks at activation patterns  across different voxels due to a stimulus rather than activation of a large brain  area ○ ex: occipital cortex is responsive to seeing objects, but specific  voxels may respond differently to images of a car vs. image of a house ● fMRI adaptation: a type of repetition suppression technique ○ areas of brain respond less and less after being shown a repeated stimulus  ○ can assess whether same brain area responds to different stimuli ○ ex: if shown a picture of table repeatedly, occipital lobe activates then responds less → if shown a drawing of table or table at different angle, occipital lobe has suppressed response → suggests that occipital lobe processes both stimuli as same/similar → processes object’s abstract properties rather than sensory details Using fMRI to examine activity relationships between brain areas ● brain areas don’t function in isolation → information flows through fiber  tracts: axons bundled together between brain areas ● functional connectivity: how activity of one brain area varies with activity of  another area ○ example: coactivation → two brain regions respond similarly to experimental stimuli ○ resting­state connectivity: identifies regions that vary in conjunction when participant lies in MRI scanner but doesn’t do any tasks → measures spontaneous activity in brain rather than activity in response to specific stimuli ○ areas with functional connectivity tend to show resting­state  connectivity Method Measures measure­ coverage spatial  temporal  invasive? participants activity  resolution resolution relationship impairment  damage  area of the  limited to  little to none invasive animals or  Lesions in  removes  damage size of  patients with  functioning  neural activity  lesion stroke,  after brain  in region trauma, etc. damage change in  pulse  superficial  limited to  some when  noninvasive healthy  TMS functioning  temporarily  brain areas areas  pulse given  humans (may  after given  stimulates or  affected by  in one shot  cause  pulses disrupts neural the pulses rather than  seizures in  activity  repeatedly some)  action  neuron fires in  single  high  high invasive animals single­unit  recording potentials  response to  neuron produced by specific  single  stimulus neuron dendritic  dendrite  mainly near coarse/probl good  noninvasive humans EEG field  voltage  surface of  ematic potentials fluctuates  brain when neuron  receives input gamma rays isotopes  whole brain good (3D)  none noninvasive humans PET emitted by  migrate  decaying  towards brain  isotopes  area of high  injected into  activity  bloodstream fMRI BOLD  areas with high whole brain very good better than  noninvasive humans signals activity require  PET, but still  more blood,  limited (a few oxyhemoglobin seconds) increases  optical imaging intensity of  active areas  whole brain high better than  invasive animals (hemodynamic) reflected  reflect light  fMRI, but still light differently than limited  inactive (hundreds of  milliseconds) optogenetics change in  light sensitive  selective  limited to  high invasive animals functioning  ion channels  neural  the neural  after  open/close  circuits circuits  procedure when  chosen responding to  light, affects  action  potentials and  neural activity


Buy Material

Are you sure you want to buy this material for

0 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Janice Dongeun University of Washington

"I used the money I made selling my notes & study guides to pay for spring break in Olympia, Washington...which was Sweet!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.