×

### Let's log you in.

or

Don't have a StudySoup account? Create one here!

×

or

## Week 1 & 2 Notes

1 review
by: Michelle Schmutz

30

1

12

# Week 1 & 2 Notes Math 2420

Michelle Schmutz
UTD
GPA 3.3

Get a free preview of these Notes, just enter your email below.

×
Unlock Preview

Notes for the first two weeks
COURSE
Differential Calculus with Applications to Physical Sciences and Engineering
PROF.
Dr. Anatoly Eydelzon
TYPE
Class Notes
PAGES
12
WORDS
CONCEPTS
Math, Diffeq, de, Differential Equations
KARMA
25 ?

## 1

1 review
"Clutch. So clutch. Thank you sooo much Michelle!!! Thanks so much for your help! Needed it bad lol"
Carli Gaylord

## Popular in Department

This 12 page Class Notes was uploaded by Michelle Schmutz on Friday January 22, 2016. The Class Notes belongs to Math 2420 at University of Texas at Dallas taught by Dr. Anatoly Eydelzon in Winter 2016. Since its upload, it has received 30 views.

×

## Reviews for Week 1 & 2 Notes

Clutch. So clutch. Thank you sooo much Michelle!!! Thanks so much for your help! Needed it bad lol

-Carli Gaylord

×

×

### What is Karma?

#### You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 01/22/16
Lecture Lab (1/11/16 ) Edward - FO 2.408 Review Integratinproblems D Partial f××Ijf#dx Fractions ' ¥e×IIaddxI- ( -2 xts . { f×IzdX xtskx ) )K 2) .=2hKes\$sKt7b=-7=bn(E) x+I..hy*b b=# px-21 9=2 2) Ⱦ the ftp.#+zdxdisgrimgangntisnegatim complete square =suHi#ua = SETHI ,dx -35k¥ ,,d× L naiiktikihd 't again zln|(×tD2tH =tzh|k+D7HtC 2+1 ,¥Hu = ) - I - anctanktl Zartan(x+D+c @ fsin3x agzxdx - fsinxa www.ddx . . - LEET fltuyuzdu n÷+¥=aessI .ag± blfsiixocosxdx 1-sink - uonion Sikh =gEIs÷ - St ,u÷du+Sts¥udu Wanted = " ''a 'z(s¥tdrf¥a) dw= du ÷(Snt¥dv - grief . zvtlnlrt ={(¥ -w÷+2wtnrwD - =£(lh¥h( ltujthfhut lt¥+2CH .lnttud) Stella axthxtb tadnedx X=u : ¥ Pµ¥du duration rintgmte? - th £ah=ud£+r¥× fluxdx fl .lu×d× Stsitxdx uaa÷±urHaaa { xcosxtsinx product txhxfxxtdx - Suaaaexaurfvahxtdx mk =×lnx-×+c D fcxl . .. ( equation ) OKDCAXD -g⾨hoo Effort , ft )- 0 h=O ' 'Ei*a⾨o€f*En¥;¥÷#asg removed Ⱦ n⾨ (n)Xnt ° ×°I f (x)=¢tl)e× =×€-×÷s=×e× , It £ h! but itsok f "k)=Kt2)e× bciteguab fhH=k+n)e× too fn(o)=n OfficeFO 2.108 6593 Lecture 1/12/16 Hours TR ipnspm OnliassignmentsGleaming - verysimiltofuizees I - 0 dyµ±=E ×z.su .ge#t9houmy&c blatant ¥2 edge Differ & derivatives ian equatifunction its Town population0.000c) Fly ,yi,t)=O )'- arowthmte2% peryur guy 't population years ( DE Sinttit} { , rang dp ;tz Yltkacasg.bsingaansiodT-002Pyty-O_dpp.o.ozdts39neeyCtt-eithppd-o.o2ttCAx-bpPf-eo02ttCAxo-b-ece0.02tAX-J_c@0.02tAktXD-AYstAxo.bP-tce0.02t.oPH-Ce0.QTyenygfeasabkforae1otSsohhwsyears.net |pUD=DQoo0e°= aa=kPdaE=kHp§aM==kP¥=o f*Ea⾨ht es A P(H==C=100,eoozt 100,000 InIVP=PEtI÷roblemCIVP) dPp=k(+)df P=±k equilibrium dp population k#=dt F- Mandate of eittaesftisinf rarity meant . yvD y is a constant Sin x=× it× is close to O =mg (dependingn)tem # linear approximation ¥=9m1㾎 Same equation as dpq=kp# x astb ⾨ 1.3 DE 21 CFirstforderolinear PE Bernolli Equation go.is?yDifavntialEouatimsgBEsoewnkhwTpimstgTn&gsof1mnmimthwy'=3yty2+t yt÷ LjnnogEDE7timishiwnonderimtird+qy.ypyyfitye . anlHyH=fCH yitytt FTD " <a ;a ,. ,an>ig .yk 't.ijih=f Y '+Siny=fH ynty=fH ) " ly"+1y=t2 6 40,1>.< y ,yiY > Sintynttzy 'tety=3t systems QDE HH ,yH xtttaltsxltttbctytttftt ) ) y 'H=cHxHtdHyH+gH c :mss#*t Nonlinear DE : .: Mtmn sin×*¥+¥+ / . .o d2f Sino -0 Sinxxx lfxissmell ray at 't =L *< lxijnosix Ot= ? First Order Lines Differential Equations CFOLDE ) m .dV#=myy 㾎 § ( stttyy '+(2tt3Jy=t '- ' dydk -#+g Cfgl flgtfg ((3t+t4D'=t :¥e*Ⱦn€i¥÷¥fiI.it pay 'tgHy=rCH /pH y 'tfpHy=rpH Bernoulli Equation ( notin textbook) " y 'tplHy=qLHy y 't 4Ay=t3y2 , 4=2 if linear h=Q1 u=yt2= Yy stir yhy wswfstitutim u'- ' uH=y' Its ytzy *yz ' YES uutgnnittny, u -s 'In Tfj*yn ''=- u'y2 " y '='#n y ¥Yn+puyY=fy iiuftfuy - TH ,÷tpu=g #'t±u=tTI Yu ye j -ty=t lytt.gl#Comeetbtuotusqre ) '- µHy µH+y=µHt (µHj)=µ'HytµG# - nttty may e#4et42y= e- they µ '=µt -t \$=tta*€, µµ= ( hit µµ =-± ; e-t42 / e- ) omalsolou ( t42)==t%ft substitution %#y)'=e#T ' line tetkytefty -642T ((x2t1D'=2k2H)zx e-tY2y= - et42 + Ⱦ Bernoulli y equation u=y 't'tEy=t3y ,u=Yy tftteue - ' - . t'm -¥u=t3)*µG) 㱺(µuj'=µ1ntµun= ' y '+PHy=gH ' ' . 4tu=-t5*E nineteen Eli - Vtuf - t.tt -4 ' nd=÷ flu ttu . gut 's .tt' ' '= .' lbnfiktetDttu=entt+lncbrnoulliqwtinEh=hktj.h=tthfE)=7y=Yu=Fn(gj f- - lnttc 4u= kµly¥H separable equation dyklt - fly )glH dxffg )=gHdt ' a) y - ty=t Hy ) y '=ttty=t( Ieng - dydt t( Hy) dr. jtdt µlHy)=t4z+C Hy=et4ztC l+y=cet4z y=ttu±k ( same solution as before ) . x ex)y'¥y= 's - dqx=gI-Ⱦydy . xdx Firm p=O, p=K 3 z tlguilibriwm /balanced path solution population) Yz=z×tC p¢)=o ytxhc PH ftp.T.dt |Y2+×ȼ# implicitfunction nd ' are '¥÷EE#ri@xFEFgppH=pc?pYrF@=rdtlizopHkszooittrs0 )dp/ A=rH㱺P Logisticmodel no dff=r(t#p dp/dt=r( Pp kis carryingCapacity rbecomessmdlitpis large Pissmdlplkxo .'- Pka1 .de#=rp 4kȾ1 I-teȾO -0 , .dk/dt Mk >l , 1.Pkeo .dk/dtLO 1/21/16 Equationsohomogeneofunctionsmogenousuations : Homogeneousctofn (i.e.st)nce adfcx f×)=t" ,y)=2×tSy ) = tfxstytttktsy , f[t¥,iy y)=fCtx, ty # ftp.#=x2ty2tz2f(t(x,y,zD=t2(x2tyztEt fCx.yhfxEy2fCtsx.yD-toEtF.tso@Hx.ypd-x2yZ5h-8flx.y • )=x2t ÷ QGHEIII y/×=u -4 y 1#k) yen dyµ×=dy*x+uȾ×yejI=×µk '(x +y)=yµ . × -2U㾎㱺hattu=¥, # ×an*=h÷u=utuuTL=hIT㱺un÷du=d,÷ --S[u÷zt Hk4H't¥u fear '㱺m=fd÷ - ysbnCu4DtFartanHrdatEx-atwdanKJ-tnxtc-lnHthc.lnkfthlHeFDttrzarosanxfrdhf.i.hfdy_d-9ixt6.yT0getridqGtqazxt6uytCzCaseLxaky.tocFky.zogez7dttIttcase2.e@Gdy-2x-3yt1dyldx-2IIttohtfYgfoatIurtIII.unstwshEtdiotax-H3dxQI3EttFrttq.y.gghxt32x-sytk2lrtbHlutaH.tzfExtfZIs.rE3jiEt3atlJgEu.o.us : = (vtb - Zluta ) -12 , : ) DX -old*32 = vsutb -2*2 dfg=buu¥tl=6utft,T 2b -39+1=0 ' a -3=0 ,a=3 a9f=7÷E (u,÷a)dn=da - b-2at2= b=2a -2=4 25444=0 answer y=ut3 x=vt4 ¥sEnhHu#)=x+c 'D MA TTI Yzlxtsyththltkisyt = Xtc =z 1- % y2-Ddyt2xy3dx-oauatdyf.2xlu7391dxnxIy.yAyxpYdxiYsIzyuaaind9ftExxnTpn9dxoundafaauau3acJTjtdXEtEQT2dxt-uirXddxt-2xu2atlwTxxXtlhomoglneous@xdqxrEyTixoxaatxtu-fEuxGXdx-xF4xFIxFiFuiuyIeTmDha-ay.y .mx#2tu)du=dgdD/dxIxddt+u Sltxtdx x=anu nsubsubacktottx

×

×

### BOOM! Enjoy Your Free Notes!

×

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

## Why people love StudySoup

Jim McGreen Ohio University

#### "Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Allison Fischer University of Alabama

#### "I signed up to be an Elite Notetaker with 2 of my sorority sisters this semester. We just posted our notes weekly and were each making over \$600 per month. I LOVE StudySoup!"

Bentley McCaw University of Florida

Forbes

#### "Their 'Elite Notetakers' are making over \$1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!
×

### Refund Policy

#### STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

#### STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com