New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

BIOL 225 - Cell Biology - Chapter 1 Notes

Star Star Star Star Star
1 review
by: MelLem

BIOL 225 - Cell Biology - Chapter 1 Notes BIOL 225

Marketplace > Simmons College > Biology > BIOL 225 > BIOL 225 Cell Biology Chapter 1 Notes
Simmons College
GPA 3.4
View Full Document for 0 Karma

View Full Document


Unlock These Notes for FREE

Enter your email below and we will instantly email you these Notes for Cell Biology

(Limited time offer)

Unlock Notes

Already have a StudySoup account? Login here

Unlock FREE Class Notes

Enter your email below to receive Cell Biology notes

Everyone needs better class notes. Enter your email and we will send you notes for this class for free.

Unlock FREE notes

About this Document

Outline of chapter 1 in Karps 7th edition Cell biology book.
Cell Biology
Dr. Lopilato
Class Notes
Biology, premed, Cell Biology, outline, notes, Chapter, pictures, Viruses, cells, eukaryotes, prokaryotes, Science, study




Star Star Star Star Star
1 review
Star Star Star Star Star
Samuel Croteau

Popular in Cell Biology

Popular in Biology

This 11 page Class Notes was uploaded by MelLem on Saturday January 23, 2016. The Class Notes belongs to BIOL 225 at Simmons College taught by Dr. Lopilato in Fall 2016. Since its upload, it has received 42 views. For similar materials see Cell Biology in Biology at Simmons College.

Similar to BIOL 225 at Simmons College


Reviews for BIOL 225 - Cell Biology - Chapter 1 Notes

Star Star Star Star Star

-Samuel Croteau


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 01/23/16
BIOL  225   Cell  Biology   Professor  Lopilato     Chapter  1:  Introduction  to  the  Study  of  Cell  and  Molecular  Biology     1.1 The  Discovery  of  Cells   • Because  of  the  cells  small  size,  they  can  only  be  seen  with  the  aid  of  a   microscope.   • The  first  compound  light  microscope  was  constructed  by  the  end  of  the  16   century.   • The  discovery  of  cells  is  often  credited  to  Robert  Hooke,  an  English   microscopist.     o When  Hooke  examined  his  cork  under  the  microscope,  he  saw  what   he  called  “cells”,  these  cells  were  actually  the  cell  walls  of  dead  plant   cells.   • Leeuwenhoek  –  was  the  first  to  examine  pond  water  under  the  microscope.   o He  observed  teeming  microscopic  “animalcules”   o Was  also  the  first  to  describe  various  forms  of  bacteria   • Schwann  conducted  that:   o The  cells  of  plants  and  animals  are  similar  in  structure  and  proposed   two  tenets  of  the  cell  theory:   ▯ All  organisms  are  composed  of  one  or  more  cells.   ▯ The  cells  is  the  structural  unit  of  life.     1.2 Basic  Properties  of  Cells   • Just  as  plants  and  animals  are  alive,  so  too  are  cells.   o Life  is  the  most  basic  property  of  cells   o Cells  are  the  smallest  unity  that  exhibits  this  property  (life).   • Whole  cells  can  be  removed  from  an  animal  or  plants  and  be  cultured  in  a   lab.   o Here  they  can  grow  and  be  reproduced  for  an  extended  amount  of   time  so  that  they  can  be  studied  and  a  part  of  research.   • Death  can  also  be  considered  a  basic  property  of  life.   o Cells  within  the  body  tend  to  die  by  themselves.   o Other  times,  cells  that  pose  a  threat  or  are  damaged  can  die  and   deteriorate.   • The  first  culture  of  human  cells  began  in  1951  at  Johns  Hopkins  by  George   and  Martha  Grey.     o The  cells  were  obtained  from  a  malignant  tumor  of  Henrietta  Lacks.   o The  cells  were  named  HeLa  cells  after  her.   o Her  cervical  cancer  cells  are  still  being  grown  in  laboratories  around   the  world  today,  and  are  being  used  in  colleges  and  research  for   learning  purposes.   • Cells  are  much  easier  to  study  when  they  are  outside  of  the  body  in  a  petri   dish.   o In  Vitro  –  cultured  outside  the  body.     o In    Vitro  grown  cells  have  become  essential  for  cell  and  molecular   biologists.     Cells  are  Highly  Complex  and  Organized     • The  complexity  of  life  has  many  different  levels  –  over  the  course  of  the  class,   we  will  discuss  several:   o Organization  of  atoms  into  small  molecules   o Organization  of  small  molecules  into  giant  polymers   o And  the  polymers  into  subcellar  organisms.   • Fortunately  for  cell  and  molecular  biologists,  evolution  has  moved  very   slowly  at  the  levels  of  biological  organization.   • When  looking  at  a  cat  and  human,  there  are  many  anatomical  differences,  but   the  organelles  and  structures  that  make  up  the  cells  are  similar.   • Many  of  the  basic  processes,  such  as:   o Synthesis  of  proteins   o Conservation  of  chemical  energy   o Or  the  construction  of  a  membrane  –  are  very  similar  in  all  living   organisms.     Cells  Possess  a  Genetic  Program  and  the  Means  to  use  it     • Organisms  are  build  according  to  information  that  is  encoded  in  a  collection   of  genes   o Genes  –  constructed  of  DNA   • The  amount  of  information  packaged  into  the  chromosomes  in  the  nucleus  is   approximately  100  times  smaller  than  the  dot  on  the  ‘i’     • Genes  constitute  the  blueprints  for  constructing  cellular  structures  and   running  cellular  activities,  and  the  program  of  making  more  of  themselves.   • The  molecular  structure  of  genes  allows  for  changes  in  the  genetic   information  (mutations).   o Mutations  –  lead  to  variation  among  individuals,  which  forms  the   basis  of  biological  evolution.  Mutations  can  be  harmful,  and  in  some   cases  be  helpful  to  the  organism.       Reproduction  of  Cells     • Cells  reproduce  by  division.  The  contents  of  the  “mother”  cell  are  divided  into   two  “daughter”  cells   • Prior  to  division,  the  genetic  material  is  duplicated;  each  daughter  cell   receives  a  complete  and  equal  amount  of  material.   • In  most  cases,  the  cells  have  approximately  the  same  volume.  However,  it  is   sometimes  possible  for  one  of  the  cells  to  retain  nearly  all  of  the  cytoplasm,   even  though  it  has  ½  of  the  genetic  material.     Cells  Acquire  and  Utilize  Energy     • Every  biological  process  requires  the  input  of  energy.   • The  energy  of  light,  from  the  sun  is  trapped  in  the  light  absorbing  pigments   present  in  the  membranes  of  the  photosynthetic  cells  of  plants.   • Light  energy  is  converted  by  photosynthesis  to  chemical  energy  that  is  stored   in  energy  rich  carbohydrates,  such  as  sucrose  and  starch.   • For  most  animals,  energy  comes  pre-­‐packaged  in  the  form  of  glucose.   o In  humans,  glucose  is  released  by  the  liver  into  the  blood  where  it  is   then  able  to  circulate.  Energy  is  brought  to  all  of  the  cells  in  the  body.   o Glucose  is  then  disassembled  and  stored  (usually  as  ATP)  in  the  body.   • Cells  expend  an  enormous  amount  of  energy  when  they  break  down  and   rebuild  the  macromolecules  and  organelles  that  they’re  comprised  of.     Cells  Carry  out  a  Variety  of  Chemical  Reactions   • Cells  function  similarly  to  “chemical  plants”   • Even  the  simplest  form  of  bacteria  undergoes  and  is  capable  of  hundreds  of   different  chemical  transformations   • Virtually  all  chemical  reactions  that  take  place  in  the  cell  require  enzymes.   o Enzymes  –  molecules  that  greatly  increase  the  rate  at  which  a   chemical  reaction  occurs.  A  catalyst.     o Metabolism  –  The  sum  total  of  the  chemical  reactions  in  a  cell.     Cells  engage  in  Mechanical  Activities     • Cells  are  very  active:   o Material  are  transported  from  places  to  other  places.   o Structures  are  assembled  and  then  rapidly  disassembled.   o In  many  cases,  the  cell  moves  itself  from  one  site  to  another.   • Motor  proteins  are  one  of  the  many  types  of  molecular  “machines”  employed   by  the  cell  to  carry  out  mechanical  activities.     Cells  are  able  to  Respond  to  Stimuli   • Some  cells  respond  to  stimuli  in  obvious  ways   o Single  celled  protists  –  moves  away  from  an  object  in  its  path  or   towards  a  source  of  nutrients.   • Cells  possess  receptors  to:   o Hormones   o Growth  factors   o Extracellular  materials   o As  well  as  substances  on  the  surfaces  of  other  cells.   • A  cells  receptors  provide  a  pathway  for  an  external  stimuli  (signal)  to  evoke  a   specific  reaction  in  the  target  cells.   • Many  cells  may  respond  to  a  stimuli  by:   o Alternating  their  metabolic  activities     o Moving  from  one  place  to  another     o Or  –  committing  suicide       Cells  are  capable  of  self-­‐regulation   • If  fluctuations  within  the  cell  occur,  specific  feed  back  circuits  are  activated   that  serve  to  return  the  cell  to  the  appropriate  state.   • An  ordered  state  requires  constant  regulations   • Many  processes  within  the  cell  require  a  specific  series  of  ordered  steps.     Cells  Evolve     • It  is  resumed  that  cells  evolved  from  a  pre-­‐cellular  life  form   o Pre-­‐cellular  life  forms  are  thought  to  have  evolved  from  non-­‐living   organic  materials  that  were  present  in  the  primordial  seas.   • According  to  one  of  the  tenets  of  moderns  biology,  all  living  organisms  have   evolved  from  a  single  common  ancestral  cell  that  lived  more  than  3  billion   years  ago.   • Evolution  is  not  an  event  from  the  past,  but  an  on  going  one  that  continues  to   modify  the  properties  of  cells  of  future  organisms.     1.3 Two  Fundamentally  Different  Classes  of  Cells  (pg  7)   • Once  the  electron  microscope  became  widely  available,  biologists  were  able   to  examine  the  internal  structures  in  a  large  variety  of  cells.   • These  studies  determined  that  there  was  two  different  types  of  cells   o Prokaryotes   o Eukaryotes   • The  two  cell  types  can  be  distinguished  between  by  looking  at  their   structure,  size  and  internal  organelles   o Organelles  –  internal  structures  of  a  cell.   • Prokaryotic  cells   o Structurally  simpler   o They  include  –  bacteria     • Eukaryotic  Cells   o Structurally  more  complex   o They  include  –  protists,  fungi,  plants  and  animals   • There  is  no  known  time  of  appearance  of  prokaryotes,  but  there  is  evidence   of  them  in  rocks  from  2.7  billion  years  ago.   o The  rock  contains  complex  organic  molecules  that  are  characteristic   of  particular  types  of  prokaryotes  (cyanobacteria)   o Cyanobacteria  appears  2.4  billion  years  ago,  this  is  when  02  was   infused  into  the  atmosphere.   o O2  is  the  by  product  of  photosynthetic  activity     Characteristics  that  Distinguish  Prokaryotic  and  Eukaryotic  Cells     • There  are  many  differences  and  similarities  between  prokaryotes  and   eukaryotes.   • The  shared  similarities  almost  certainly  evolved  from  prokaryotes   o Due  to  common  ancestry,  both  types  of  cells  share  an  identical  genetic   language,  a  common  set  of  metabolic  pathways,  and  many  common   structural  features.   • Both  types  of  cells  are  bounded  by  plasma  membranes.   o Serves  as  selectively  permeable  barrier  between  the  living  and  non-­‐ living  worlds.   • Although  the  cell  walls  of  prokaryotes  and  eukaryotes  may  be  similar   functions,  their  chemical  composition  is  very  different.   • Internally,  eukaryotic  cells  are  much  more  complex  –  both  structurally  and   functionally.     Prokaryotic:   • The  genetic  material  of  prokaryotes  is  found  in  the  nucleoid.   • Nucleoid  –  a  poorly  demarcated  region  of  the  cell  that  lacks  a  boundary   membrane  to  separate  it  from  the  surrounding  cytoplasm.     Eukaryotic:   • In  contrast,  eukaryotic  cells  posses  a  nucleus.   • Nucleus  –  a  region  bounded  by  a  complex  membranous  structure  called   the  nuclear  envelope.     DNA:   • Prokaryote  cells  contain  relatively  small  amounts  of  DNA.   o The  DNA  content  of  bacteria  ranges  from  about  600,000  to  8  million   base  pairs.   o This  encodes  for  about  500  –  several  thousand  proteins.   • Eukaryotic  cells  tend  to  contain  considerably  more  genetic  information.   • Both  prokaryotes  and  eukaryotic  cells  have  DNA  containing  chromosomes.   • Eukaryotic  cells  possess  a  number  of  separate  chromosomes.  Each   containing  a  single  linear  molecule  of  DNA.   • Nearly  all  prokaryotes  however  contain  a  single  circular  chromosome.   • Most  importantly,  eukaryotic  cells  chromosomal  DNA  is  tightly  associated   with  proteins  to  forma  complex  nucleoprotein  known  as  chromatin.       The  cytoplasm     • The  cytoplasm  of  the  two  different  types  of  cells  is  very  different.   • The  cytoplasm  of  a  eukaryotic  cell  is  filled  with  a  large  amount  of  diverse   structures  (plant  &  animal  cells)   • Even  yeast,  the  simplest  Eukaryote  is  more  complex  than  the  average   bacterium.     Eukaryotic  Organisms’  cells  contain  an  array  of  membrane  bound  organelles     • Eukaryotic  Organelles:   o Mitochondria  –  Where  chemical  energy  is  made  available  to  fuel   cellular  activities.  “The  power  house  of  the  cell”   o Endoplasmic  Reticulum  –  where  many  of  the  cell’s  proteins  and  lipids   are  manufactured.   o Golgi  complexes  –  Where  materials  are  sorted,  modified,  and   transported  to  specific  cellular  destinations.   • Variety  of  simple  membrane  bound  vesicles  of  varying  dimension.     • Plan  cells  contain  additional  membranous  organelles     o Chloroplasts  –  the  site  of  photosynthesis.  Pigmented  cells.     o Single  large  vacuole  –  occupies  a  large  volume  of  the  cell,  waste   storage  (sometimes).   • The  cytoplasmic  membranes  of  eukaryotic  cells  form  a  system  of   interconnecting  channels  and  vesicles.   o Function  in  the  transport  of  substances  from  one  part  of  a  cell  to   another   • In  Prokaryotic  cells,  intracytoplasmic  communication  is  less  important   because  of  their  small  size.   o The  necessary  movement  of  materials  can  be  accomplished  by  simple   diffusion.   • Eukaryotic  cells  also  have  structures  that  lack  a  surrounding  membrane.   o Elongated  tubules     o Filaments  of  the  cytoskeleton.     • Prokaryotic  and  Eukaryotic  cells  contain  ribosimes.   o Ribosomes  –  non  membranous  particles  that  function  as   “workbenches”  on  which  the  proteins  of  the  cell  are   manufactured.     • The  cytoplasm  of  eukaryotic  cells  is  extremely  crowded,  this  leaves  little   space  for  the  soluble  phase  of  the  cytoplasm  (cytosol).       Eukaryotic  Cell  –  structures         Prokaryotic  Cell  –  Structures               • Eukaryotes  divide  by  the  complex  process  of  mitosis   o Duplicated  chromosomes  condense  into  compact  structures  that  are   segregated  by  an  elaborate  microtubule  containing  apparatus.     o Mitotic-­‐Spindle  –  allows  each  daughter  cell  to  receive  an   equivalent  array  of  genetic  material.   • In  the  prokaryotic  cells,  there  is  no  compacting  of  the  chromosome  and  no   mitotic  spindle.   • Prokaryotes  for  the  most  part  are  non-­‐sexual  organisms   o They  only  contain  one  copy  of  their  single  chromosome  and  have  no   processes  comparable  to  meiosis,  gamete  formation,  or  true   fertilization.   • Eukaryotic  cells  possess  a  variety  of  complex  locomotor  mechanisms,   whereas  those  of  prokaryotes  are  relatively  simple.   o The  movement  of  a  prokaryotic  cell  may  be  accomplished  by  a  thin   protein  filament  called  a  flagellum.     o Flagellum  –  use  for  locomotion,  protrudes  from  the  cell  and   rotates.  These  rotations  propel  the  cell  by  exerting  pressure   against  the  surrounding  fluid.   • Certain  Eukaryotic  cells  such  as  protists  and  sperm  also  possess  flagella,  this   is  however  much  more  complex  than  a  thin  filament.     • The  eukaryote  cell  flagellum  also  uses  a  different  mechanism  for  the   locomotion.   • Even  the  most  metabolically  talented  cells  in  your  body  require  a  variety  of   organic  compounds  including  a  number  of  vitamins  and  other  essential   substances  that  they  cant  make  on  their  own.   o Most  of  these  essential  dietary  items  re  produced  by  the  bacteria  that   normally  live  in  the  large  intestine.         Types  of  Prokaryotic  Cells   • The  distinction  between  prokaryotic  and  eukaryotic  cells  is  base  on   structural  complexity  and  not    on  phylogenetic  relationship.     • Prokaryotes  are  divided  into  two  major  taxonomic  groups,  or  domains.     o Archaea  (archaeabacteria)   o Bacteria  (Eubacteria)   • Numbers  if  the  archaea  are  more  closely  related  to  eukaryotes  than  they  are   to  bacteria.     • Most  cyanobacteria  are  capable  not  only  of  photosynthesis,  but  also  of  a   process  known  as  nitrogen  fixation.     o Nitrogen  fixation  –  the  conversion  of  nitrogen  (N2)  gas  into   reduced  forms  of  nitrogen  such  as  ammonia.     • The  species  that  are  able  to  photosynthesis  and  nitrogen  fixate  are  usually   the  first  organisms  to  colonize  –  this  is  because  all  they  need  is  N2,  CO2,   Water  and  light  to  survive.       Types  of  Eukaryotic  cells:  Cell  Specialization   • Complex  unicellular  organisms  represent  one  evolutionary  pathway   o The  other  pathway  has  led  to  the  evolution  of  multicellular  organisms   in  which  different  activities  are  conducted  by  different  types  of   specialized  cells.   • Specialized  cells  are  formed  by  a  process  known  as  differentiation.     • The  pathway  of  differentiation  followed  by  each  embryonic  cell  depends  on   the  signals  its  receiving  from  its  external  and  nearby  environment.   o Signals  depends  on  the  position  of  the  cells  in  the  embryo.   • As  a  result  of  differentiation,  different  types  of  cells  acquire  a  distinctive   appearance  and  contain  unique  materials.   • For  example,  skeletal  muscles  contain  a  network  of  precisely  aligned   filaments  composed  of  contractile  proteins.        Model  Organisms   • There  are  6  model  organisms  that  are  commonly  used  in  research  (there  are   however  more  than  6  model  organisms).   o 1  prokaryote   o 5  eukaryote   • Each  of  these  organism  has  specific  advantages  that  make  it  particularyly   useful  as  a  research  subject.     The  size  of  cells  and  their  contents   • Two  units  of  linear  measure  are  most  commonly  used  to  describe  structures   within  the  cell.   -­‐6   o Micrometer  (um)  –  equal  to  10 meters   o Nanometer  (nm)  –  equal  to  10 -­‐meters   o Angstrom  (Å)  –  equal  to  1/10  of  a  nanometer   • Highly  elongated  proteins  are  over  100  nm   • DNA  is  approximately  2  nm  wide   • Cells  and  their  organelles  are  more  easily  defined  in  micrometer.   o Nuclei  for  example  are  5-­‐10  um  in  diameter.   • Prokaryotic  cells  typically  range  in  length  from  about  1-­‐5  um.   • Eukaryotic  cells  range  from  10  -­‐30  um.   • Most  cells  are  small  because:   o Eukaryotic  cells  possess  a  single  nucleus  that  only  has  2  copies  of   most  genes   o As  cells  increase  in  size,  their  surface  area/volume  ration  decrease.   The  ability  of  a  cell  to  exchange  substances  with  its  environment  is   proportional  to  its  environment.   o If  the  cell  grew  too  large,  its  surface  would  not  be  sufficient  to  take  up   substances  needed  for  metabolic  activities.     o Cells  tend  to  depends  greatly  on  the  random  movement  of  molecules   (diffusion)     Synthetic  biology   • Goal  is  to  create  some  minimal  type  of  living  cells  in  the  laboratory   essentially  from  ‘scratch’   • A  more  modest  goal  is  to  develop  forms  from  existing  organisms.   • Following  the  “DNA”  transplant  in  come  cases,  the  new  bacterium  takes  on   the  characteristics  of  the  species  from  which  the  DNA  was  derived  from.     1.4 Viruses     • By  the  end  of  the  19  century,  the  work  of  Louis  pasteur  (and  others)   convinced  the  scientific  world  that  infectious  diseases  of  plants  and  animals   were  from  bacteria   o BUT  Tobacco  mosaic  disease  and  hoof  mouth  disease  in  cattle  pointed   to  another  type  of  infectious  agent.   • Ivanovsky  concluded  in  1892  that  certain  diseases  were  caused  by  pathogens   that  were  caused  by  pathogens  that  were  even  smaller  and  presumably   simpler   o These  pathogens  became  known  as  viruses   • Viruses  are  responsible  for  many  human  diseases  including:   o AIDS   o Polio   o Influenza  (flu)   o Cold  sores   o Measles   o And  some  types  of  cancers  (+  More  diseases)   • Viruses  come  in  many  shapes,  sizes,  and  constructions,  but  all  share  certain   common  properties   o Intracellular  parasites  in  a  sense  –  they  cant  reproduce  unless  they   are  present  within  a  host  cell.   o Outside  of  a  cell,  the  virus  exists  as  a  particle,  or  virion.   o The  virion  contains  a  small  amount  of  genetic  material,  that   depending  on  the  virus  may  be  single  or  double  stranded,  DNA  or   RNA.   o The  genetic  material  or  the  virion  is  surrounded  by  a  capsule  known   as  a  capsid   o Viruses  are  not  deemed  living  nor  an  organism  because  they’re  unable   to  reproduce,  metabolize,  or  carry  out  any  activities  associated  with   life.   • Viral  capsids  are  generally  made  up  of  a  specific  number  of  subunits   o Viruses  only  need  one  or  a  few  genes  to  code  for  its  protein  container   • Many  viruses  have  a  capside  whose  subunits  are  organized  into  a   polyhedron  –  a  structure  having  planar  faces   • A  common  polyhedron  shape  of  viruses  is  the  20-­‐sided  icosahedron.   • In  many  animal  viruses,  the  protein  capsid  is  surrounded  by  a  lipid   containing  an  outer  envelope  that  is  derived  from  the  modified  plasma   membrane  of  the  host  cell  as  the  virus  buds  from  the  host  cell  surface   • Bacteriophages  -­‐    bacterial  viruses  are  among  the  most  complex  viruses   o They  are  also  the  most  abundant  biological  entities  on  Earth.   • Each  virus  has  on  its  surface  a  protein  that’s  able  to  bind  to  a  particular   surface  component  of  its  host  cell.   • Some  viruses  have  a  wide  host  range    meaning  they  are  able  to  infect  cells   from  a  variety  of  different  organs,  or  host  species.   • There  are  two  basic  types  of  viral  infections:   o In  most  cases,  the  viruses  arrests  the  normal  activities  of  the  host  and   has  the  cell  use  its  available  resources  to  manufacture  viral  nucleic   acids  and  proteins,  which  assemble  new  virions.   o In  other  cases,  the  infecting  virus  does  not  lead  to  death  of  the  host   cell,  but  instead  inserts  its  DNA  into  the  DNA  of  the  hosts  cell  –  the   integrated  viral  DNA  is  called  a  provirus.     Viroids   • In  1971,  it  was  discovered  that  viruses  are  not  the  simplest  types  of   infectious  agents.   • Viroid  –  a  pathogen  that  lacks  a  protein  coat,  and  consists  of  a  small   circular  RNA  molecule.   • Viroids  are  though  to  cause  disease  by  interfering  with  the  cells  normal  path   of  gene  expression             Synopsis  –  Chapter  1   • The  cell  theory  has  three  tenets   o All  organisms  are  composed  of  one  or  more  cells.   o The  cell  is  the  basic  organizational  unit  of  life   o All  cells  arise  from  pre-­‐existing  cells   • The  properties  of  life,  are  exhibited  by  cells.  Can  be  described  by  a  collection   of  properties.   o Cells  are  very  complex  and  their  substructure  is  highly  organized  and   predictable   o Genes  are  encoded  with  the  information  to  make  cells   o Cellular  reproduction  occurs  due  to  division,  all  activitie  including   reproduction  are  fueled  by  chemical  energy   • Cells  are  either  prokaryotic  or  eukaryotic   o Prokaryotic  cells  are  found  only  among  archaebacteria  and   eubacteria.   o Eukaryotic  cells  are  all  other  types  of  organisms  –  protists,  fungi,   plants,  and  animals   • Cells  are  microscopic  in  size   o They  must  be  examined  under  the  microscope  and  are  recorded  in  nm   and  um.     o The  organelles  and  structure  of  the  cells  are  small  and  must  also  be   examined  under  the  microscope    


Buy Material

Are you sure you want to buy this material for

0 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Kyle Maynard Purdue

"When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the I made $280 on my first study guide!"

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.