New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Week 13: Cryptography Part 2

by: Amy Brogan

Week 13: Cryptography Part 2 MATH 1014

Marketplace > University of Cincinnati > Mathematics (M) > MATH 1014 > Week 13 Cryptography Part 2
Amy Brogan
GPA 3.7

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Review of the Caesar and Vignere Ciphers, and the introduction of Modular Arithmetic and Decimation Coding. Overview of public and private codes, and the RSA public key encryption scheme.
Mathematics of Social Choice
Mary Koshar
Class Notes
RSA public key encryption scheme; modular arithmetic, decimation code; private code; public code
25 ?




Popular in Mathematics of Social Choice

Popular in Mathematics (M)

This 4 page Class Notes was uploaded by Amy Brogan on Saturday April 9, 2016. The Class Notes belongs to MATH 1014 at University of Cincinnati taught by Mary Koshar in Spring 2016. Since its upload, it has received 12 views. For similar materials see Mathematics of Social Choice in Mathematics (M) at University of Cincinnati.


Reviews for Week 13: Cryptography Part 2


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 04/09/16
Koshar Amy Brogan March 6 & 8, 2016 Week 13 Cryptography Part 2 Review  Shift Cipher o A code that replaces letters with other letters Code the message “Send Ammo” using the Vignere key “SHOE” (18-7-14-4) S E N D A M M O 18 4 13 3 0 12 12 14 S H O E S H O E 18 7 14 4 18 7 14 4 36 11 27 7 18 19 26 18 10 1 0 K L B H S T A S Now that we have the coded message, try to decode it like as if you received it and needed to read it without knowing what it said. K L B H S T A S 10 11 1 7 18 19 0 18 At this point to work backwards, we need to subtract the code word from what we have, but some of the numbers won’t be big enough sowe have to add 26. K L B H S T A S 10 11 1 7 18 19 0 18 +26 = 36 +26 = 27 +26 = 26 S H O E S H O E -18 -7 -14 -4 -18 -7 -14 -4 18 4 13 3 0 12 12 14 S E N D A M M O Decode this: Key: OUT T I K K U K R Modular Arithmetic  Addition operation o Sum after adding  Multiplication operation o Product after repeated adding  Subtraction operation o Difference after subtracting  Division operation o Quotient after repeated subtracting  Modular Arithmetic o Remainder after dividing With Modular Arithmetic, the answer will be what is left over after dividing the value in question. It doesn’t matter how many timesa number goes into another, only what is left over. With small numbers this is easiest to see using long division Ex 1: 1 = 3 mod2  2 goes into 3 and there is 1 left over (3-2=1) Ex 2: 23 mod5 = 3 20 / 5, 3 left over Ex 3: mod 5 = 0, 1, 2, 3, 4 (all numbers before the value is 5) Ex 4: 27 mod4 = 3 27/4, 3 left over Ex 5: 66 mod11 =0  66 = 11*6 +0 Keep in mind that all of the “=” isn’t reallyan equal sign. It’sreally “≡”, “equivalent”, but I don’t have that symbol in an easy type-able form. With large numbers, it’s easier to put the value in question into a calculator and find out the remainder, but then it will be in decimal form, andwe need it in whole numbers. So: Ex 6: 673 mod 17  673/17 = 39.588  17*39 = 663 673-663 =10 673 mod17 =10 Ex 7: 492 mod 16  492/16 = 30.7516*30 = 480  492-480 = 12  492 mod 16 = 12 Try these: 7 mod 5 = 26 mod 3 = 129 mod4 = Decimation Code In decimation code, instead of adding values from a key word, multiply a value that the sender and receiver will know. Ex: Code HEAD SOUTH, code: 3 H E A D S O U T H 7 4 0 3 18 14 20 19 7 x3 21 12 0 9 54 42 60 57 21 26mod2=2 = 16 =8 =5 V M A J C Q I F V Now decode: V M A J C Q I F V 21 12 0 9 2 16 8 5 21 /3 Where valuesare two small to divide by three, keep adding 26 till the value is a multiple of the key 2+26=28 16=42 8+26=34 5=57 +26=54 60 7 4 0 3 18 14 20 19 7 H E A D S O U T H With this code, A willalways beA because 0 multiplied by any number willalwaysbe 0.  Advantages o Simple to code o More difficult to decode  Disadvantages o Does not encode repeat letters o A is always A o Even with a small-valued key, the numbers to code will be large, and they will onlyget larger with bigger keys o The kay can’t be just anything; it has to work when decoding. Some values will be too large to decode with, and others will be confused with similar values. Try decoding: key = 5 R H U U  SymmetricCartography o Same key to code and decode o Private key  AsymmetricCartography o Public key to encode o Private code to decode How is AsymmetricCartography possible? Through prime factorization, a method discovered and developed by Rivest, Shamir, and Adleman in 1977; it is known as the RSA publickey encryption scheme. Ex: 24 = 2x2x2x3 Ex: 90 = 2x3x3x5 9x10  9=3x3;10=2x5 Using both modular arithmetic (24=4 mod 20)and prime factorization, they wereable to create a complex coding system. Two prime numbersaremultiplied to get the public key, and then only the decoder knows the prime numbers to factorize by. Ex: 11,483*45,161 = 518,583,763 Ex: 3,130,832,609 =31,91*100,699 Where we are looking at smaller values, they use numbers that aremillions of digits long. Even with a quick computer it would take a long time to find the prime factors of the numbers. Answers: T I K K UK R  FO R W AR D T I K K U K R 19 8 10 10 20 10 17 +26=34 +26=36 36 36 -14 -20 -19 -14 -20 -14 -19 5 14 17 22 0 17 3 F O R W A R D 7 mod 5 =2 26 mod 3 =2 129 mod4 = 1 R H U U;Key = 5  TR E E R H U U 17 7 20 20 +26=43+26=69+26=95 +26=33+26=59+26=85 /5 /5 19 17 4 4 T R E E


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Janice Dongeun University of Washington

"I used the money I made selling my notes & study guides to pay for spring break in Olympia, Washington...which was Sweet!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.