New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Bio Anth, Week 4 of Notes

by: Jaimee Kidd

Bio Anth, Week 4 of Notes Anth 1001

Jaimee Kidd
GPA 3.6

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Cell Division Continued and Genetics II: From Genotype to Phenotype
Biological Anthropology
Shannon C. McFarlin
Class Notes
25 ?




Popular in Biological Anthropology

Popular in anthropology, evolution, sphr

This 7 page Class Notes was uploaded by Jaimee Kidd on Thursday February 4, 2016. The Class Notes belongs to Anth 1001 at George Washington University taught by Shannon C. McFarlin in Spring 2016. Since its upload, it has received 20 views. For similar materials see Biological Anthropology in anthropology, evolution, sphr at George Washington University.

Popular in anthropology, evolution, sphr


Reviews for Bio Anth, Week 4 of Notes


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/04/16
Cell Division (cont.)  Cell Division • Mitosis ◦ Mitosis is cell division in somatic cells ◦ Occurs during growth and repair/replacement of tissues ◦ The result of mitosis is two identical daughter cells, which are genetically  identical to the original cell (2 diploid cells) ◦ Several basic events that need to happen before cell division can take place ▪ genetic material replication or duplication ▪ material needs to be separated from its parent copy ◦ Phases: ▪ (1) Interphase­  ▪ DNA replication happens during interphase right before the rest of  cell division is initiated ▪ (2) Prophase­ ▪ Chromosomes visible with 2 identical sister chromatids (sister  chromatids because they are representative of the same  chromosome and thus possess the same DNA) ▪ (3) Metaphase­ ▪ Nucleus disappears ▪ Chromosomes line up single file along equator of cell ▪ one sister chromatid containing one copy of the deny positioned on one side of the equator and the other sister chromatid positioned on the other side ▪ preparing to be pulled apart ultimately ▪ (4) Anaphase­ ▪ Sister chromatids separate ▪ The two copies of DNA are thus separated ▪ (5) Telophase­ ▪ Results in two daughter cells (diploid) with identical copies of  genetic material (each have their own nucleus, one copy of DNA) • Meiosis ◦ Production of gametes (sex cells) ◦ Characterized by two rounds of division that result in four daughter cells, each of  which contains 23 chromosomes (4 haploid cells) in humans ◦ Fertilization restores the full complement of chromosomes (diploid number of 46) to the zygote ◦ Phases: ▪ Characterized by two phases of division ▪ (1) First Division (Reduction)­ ▪ Interphase­ DNA Replication  ▪ Prophase I­ Crossing over (genetic recombination) ▪ as chromosomes condense, homologous pairs of  chromosomes find each other, this provides  an opportunity for crossing over to occur, each member  of homologous pairs, come together and cross over  exchanging genetic material ▪ after crossing over occurs, the mother chromosome actually traded genetic information with the father’s chromosome ▪ Metaphase I­ ▪ Chromosomes align in homologous pairs ▪ Random assortment of chromosome members with  respect to either side of the equator ▪ Anaphase I­ ▪ Members of chromosomes pairs separate (Reduction  Division)  ▪ Telophase I­ further separation ▪ Interkenesis I­  ▪ Two haploid daughter cells, which are  genetically dissimilar; no DNA replication ▪ Results of Meiosis Division 1 ▪ Each daughter cell inherits half as many chromosomes as  the original cell, only one member of each homologous pair (i.e. haploid) ▪ Each chromosome has two chromatids, but they are  different because of crossing over ▪ There has been recombination of genetic material from the  mother and father  ▪ (2) Second Division ▪ Prophase II­ ▪ No further replication of DNA ▪ Metaphase II ▪ Chromosomes line up single file at the equator (similar to  metaphase of mitosis ) ▪ Anaphase II ▪ Telophase II ▪ Daughter Cells ▪ 4 Haploid Gametes, genetically dissimilar  ◦ Nondisjunction of Autosomes during Meiosis  ▪ One daughter cell receives two copies of the chromosome, and the other  daughter receives no copies ▪ In the next phase of Meiosis, these copies with continue to replicate  ▪ Usually these nondisjunction events are lethal and the organism does not  survive ▪ Non lethal disjunction event­ ▪ trisomy 21­ Downs Syndrome  ◦ Mendel’s Laws of Particular Inheritance ▪ Law of Segregation ▪ Paired hereditary factors segregate randomly during formation of  gametes ▪ Law of Independent Assortment ▪ Factors controlling for inheritance of different traits assort  independently of one another  ▪ exception* Applies to genes located on different  chromosomes, but genes located on the same chromosome  (linkage) may be exceptions  ◦ Evolutionary Significance of Meiosis ▪ Meiosis increases genetic variation: ▪ Crossing over (genetic recombination) ▪ Random assortment (genetic recombination) ▪ Mutation (source of new variants)­ ▪ only mutations occurring during MEIOSIS are heritable  ▪ Provides the raw material for natural selection to act upon  Genetics II: From Genotype to Phenotype Biological Role of Genetic Material  • Accurate Replication • Stable Structure • Capable of coding for diverse information, including proteins • Capable of transmitting this information, to regulate development and normal cell  functioning—coordinate the activity of those proteins  The Building Blocks of DNA: Nucleotides • Deoxyribonucleic acid (DNA) is a nucleic acid ◦ Resides in the nucleus of the cell ◦ Stores and transmit information ◦ Made up of smaller molecules called nucleotides  • Chargaff’s Rule­ ◦ A=T and G=C • Rosalind Franklin’s X­ray diffraction photos provided clues to the structure of DNA  showing that DNA was a helical structure DNA: Deoxyribonucleic Acid • Double Helix Structure • Compromised of Nucleotides: ◦ (1) Phosphate ◦ (2) Sugar (deoxyribose) ◦ (3) Nitrogenous base ◦ (Phosphate and sugar form the background) • Located in the nucleus of the cell • Complimentary base pairing: ◦ Adenine = Thymine ◦ Cytosine = Gamine  • Implications of DNA Structure: ◦ Complimentary polynucleotide chains (specificity of base pairing) provides a  mechanism by which the molecule can replicate itself ▪ one strand forms the template for the creation of the other strand ◦ The sequence of nucleotide bases caries and contains important information (i.e.  the genetic code…) • Functions: ◦ Replication (cell division) ◦ Protein Synthesis (genotype to phenotype) • DNA Replication ◦ Occurs during Cell Division ◦ All of this occurs inside the nucleus of the cell ◦ Prior to Cell Division, special enzymes break hydrogen bonds between nucleotide bases resulting in ultimately an unzipping got the molecule somewhere along  its length continuing towards both ends of the molecule ◦ Original polynucleotide strands separate, leaving their bases exposed ◦ Original strands become templates for attracting complimentary bases and bond to them to create a new polynucleotide molecule  ◦ End result: two identical copies of the DNA molecule  Protein Synthesis (from genotype to phenotype) • Genotype= underlying genes • Phenotype= physical outcome  • Proteins may serve as structural components of body tissue and play active roles • Amino Acids, Polypeptide Chains and Proteins ◦ Amino Acid subunits are linked together to form linear polypeptide chains ▪ 20 different amino acids ▪ Create an unlimited amount of proteins based on the sequence of the  amino acids ◦ Different polypeptide chains can be associated to form complex (multimeric)  proteins  • The Genetic Code ◦ Information to make proteins is encoded in the nucleotide base sequence ▪ CODON= a sequence of three nucleotide bases, which code for one amino acid  ▪ Amino acids are specified by three nucleotide bases ◦ 4 nucleotide bases can combine to produce 64 sequences—coincide with only 20  amino acids ◦ Only 20 amino acids (redundancy). Many amino acids specified by more than  on codon sequence  ▪ because of this, many mutations still result in functionality  ◦ gene: sequence of DNA bases that carries information for synthesizing a  particular protein, and occupies a specific chromosomal locus  • Protein synthesis takes place outside of the nucleus • DNA needs to be carried outside of the nucleus by ribosomes to begin protein synthesis ▪ Ribonucleic acid­ RNA ▪ single stranded  ▪ ribose sugar ▪ uracil base  ▪ DNA ▪ double stranded ▪ deoxyribose sugar ▪ thymine base • Stages (2)  ◦ (1) Transcription­ ▪ Happens inside the nucleius ▪ DNA splits in the region of gene and  attracts complementary ribonucleotides to assemble a messenger RNA  molecule ▪ Complimentary messenger RNA (mRNA) strand is  synthesized. This mRNA will leave the nucleus and travel to the ribosome  for protein synthesis ▪ DNA: AAA CGC ▪ mRNA: UUU GCG ◦ (2) Translation: ▪ When the mRNA binds to the ribosome, protein synthesis is initiated. As  each codon in the mRNA sequence is “read” a tRNA brings the  corresponding amino acid to the ribosome ▪ happens outside the nucleus at the ribosome ▪ Transfer RNA (tRNA) molecules bind the the complementary mRNA  strand at the ribosome, bringing with them amino acids specified by the  mRNA codon  ▪ As amino acids are brought to the ribosome, they bind together to from he  amino acid chain of synthesized protein  • REVIEW: ◦ DNA: ATA GAT CGC TTA ◦ mRNA: UAU CUA GCG AAU DNA Mutation • = an alternation in the genetic code; source of new variants  ◦ Chromosomal Mutations  ◦ Point Mutations —> when a single base is incorrectly replication ◦ Duplication —> when multiple strands are replicated incorrectly ◦ Inversion —> when a strand is replicated backwards ◦ Deletions —> when a nucleotide or series of nucleotide gets incorrectly deleted • When mutation occurs at the level of the nucleotide base, it may or may not alter function • Mutations occur at random; they may also be included by other agents • Mutations may be functionally irrelevant; of those that are functionally significant ,  many are lethal or have negative consequences. Others may be neutral.  • A small proportion may be beneficial and confer selective advantages. • If the mutation occurs during meiosis, it may be passed to the next generation. Genetics Beyond Mendel • Mendelian Inheritance: ◦ single gene, autosomal dominant­recessive model ◦ useful for examining traits with qualitative variation (discrete changes) ▪ examples: ppea seed color, ABO blood system, albinism, cystic fibrosis  ◦ Codominance ▪ Both alleles in the heterozygous condition are fully expressed, with neither being dominant over the other. ▪ ABO Blood System  ◦ Sex Linkage (X­linked Traits) ▪ Controlled by genes on the X chromosome, more commonly expressed in  males. As males (XY) have only one X chromosome, any allele will be  expressed, whether dominant or recessive. ▪ Examples of recessive X­linked traits: Hemophilia, red­green color blindness • Traits that do not follow Mendel’s rules ◦ Polygenic traits ▪ Traits with quantitative (continuous) variation, influenced by two or  more genes ▪ Stature, skin color, eye color ◦ Pleiotropy ▪ A single gene influences the expression of multiple traits simultaneously  ▪ Marfan syndrome ◦ Environmental effects ▪ many aspects of the phenotype are influenced by the interaction  of genes and the environment ▪ Genotype sets limits and potential for developmental processes • The Complex Genome ◦ Types of Genes ▪ Structural Genes ▪ Regulatory Genes ▪ Homeotic Genes ◦ Introns and exons ▪ Intron­ region or stretch of region that is not translated into a  known protein ▪ Exons­ opposite  ◦ Splice Variation ◦ Non­protein coding regions ▪ Introns  ▪ Pseudogenes  ▪ formally functioning genes that have been subsequently rendered  as nonfunctional due to a mutation  ▪ Primates, especially humans, have a higher proportion of olfactory  pseudogenes than other mammals ▪ Variable number tandem repeats & short tandem repeats 


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Janice Dongeun University of Washington

"I used the money I made selling my notes & study guides to pay for spring break in Olympia, Washington...which was Sweet!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.