×

### Let's log you in.

or

Don't have a StudySoup account? Create one here!

×

or

## Math 103, week 1 notes

by: Cambria Revsine

27

0

5

# Math 103, week 1 notes MATH 103 001

Cambria Revsine
Penn

Enter your email below and we will instantly email you these Notes for Intermediate Algebra Part III

(Limited time offer)

Unlock FREE Class Notes

### Enter your email below to receive Intermediate Algebra Part III notes

Everyone needs better class notes. Enter your email and we will send you notes for this class for free.

These notes cover sections 1.1-1.3 from Thomas' Calculus
COURSE
Intermediate Algebra Part III
PROF.
William Simmons
TYPE
Class Notes
PAGES
5
WORDS
CONCEPTS
Math, Calculus
KARMA
Free

## Popular in Mathematics (M)

This 5 page Class Notes was uploaded by Cambria Revsine on Friday February 5, 2016. The Class Notes belongs to MATH 103 001 at University of Pennsylvania taught by William Simmons in Spring 2016. Since its upload, it has received 27 views. For similar materials see Intermediate Algebra Part III in Mathematics (M) at University of Pennsylvania.

×

## Reviews for Math 103, week 1 notes

×

×

### What is Karma?

#### You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/05/16
Math 103—Week 1 Notes—1.1­1.3 1.1: Domain and Range of Functions: Domain= all input values of a given function What x­values give y a real value and which do not? Range= all output values of a given function Plug in domain values to find the range Ex:  2 Find the domain and range of  f(x)= √96−x 196−x ≥0   x ≤196                                                         x≤14 ,  x≥−14 Domain= [­14,14] 2 √196− (±14 ) =0 √196−0 =¿ 14 Range= [0,14] Graphing Piecewise Functions: Graph normally for each set of x­values Ex:  −x,x<0 f(x)= 2    {x ,0≤ x≤4 4,x>4 Properties of Graphs: Increasing when x1  x2 and f(1 ) < f2x )  Going SE Decreasing when x < x  and f(x ) > f(x )  Going NE 1  2 1 2 Even if f(­x) = f(x)  symmetrical across the y­axis Odd if f(­x) = ­f(x)  symmetrical about the origin 1.2: Composite Functions: (f ° g)(x) = f(g(x))  plug in the g(x) function into the “x” of f(x) (g ° f)(x) = g(f(x))  plug in the f(x) function into the “x” of g(x) Ex: If  f ( ) √ and  g (x=x+1 , find (g ° f)(x) (g ° f)(x) = g(f(x)) = (f(x) + 1) = √x +1 Shifting Functions: Vertical shift: y= f(x) + k  Shifts the graph vertically k units Horizontal shift: y= f(x + h)  Shifts the graph left h units if h is positive            Shifts the graph right h units if h is negative Scaling Functions: For c > 1… y = c f(x)  Stretches the graph vertically by a factor of c 1 y =  c  f(x)  Compresses the graph vertically by a factor of c y= f(x/c)  Stretches the graph horizontally by a factor of c y = f(cx)  Compresses the graph horizontally by a factor of c Reflecting Functions: y = ­f(x)  Reflects the graph across the x­axis y= f(­x)  Reflects the graph across the y­axis   1.3: Unit Circle:  sin ∅ =  opp csc ∅ hyp hyp 1 =  opp    sin     adj cos ∅ =  sec ∅ hyp hyp 1 =  adj    cos   opp sin tan ∅ =    tan ∅ =  adj cos adj 1 cot ∅ =  opp    tan Trig Functions Positive/ Negative:     S A sin positive all positive T C tan positive cos positive **All Students Take Calculus Trig Graphs: Trig Identities: cos2 ∅  + sin∅  = 1 2 2 1 + tan ∅  = sec∅ 1 + cot ∅  = csc∅ cos(A + B) = cosAcosB – sinAsinB sin(A + B) = sinAcosB + cosAsinB Double­Angle Formulas: 2 2 cos2 ∅  = cos ∅  ­ sin∅ sin2 ∅  = 2sin∅ cos ∅ Half­Angle Formulas: 2 1+cos2∅ cos ∅  =  2 sin ∅  =  1−cos2∅ 2 y = af(b(x + c)) + d a= vertical stretch/ compression; refection across y = d if negative b= horizontal stretch or compression; reflection across x = ­c if negative  c= horizontal shift d= vertical shift applied to the sine function  General sine function: 2π f(x) = A sin ( B (x – C)) + D |A|  = amplitude  vertical distance from center of sine curve |B|  = period  smallest cycle of the function    C = horizontal shift D = vertical shift **Whatever value B is in the function, divideπ2  by it to find the new period

×

×

### BOOM! Enjoy Your Free Notes!

×

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

## Why people love StudySoup

Steve Martinelli UC Los Angeles

#### "There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Anthony Lee UC Santa Barbara

#### "I bought an awesome study guide, which helped me get an A in my Math 34B class this quarter!"

Jim McGreen Ohio University

Forbes

#### "Their 'Elite Notetakers' are making over \$1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!
×

### Refund Policy

#### STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

#### STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com