×

### Let's log you in.

or

Don't have a StudySoup account? Create one here!

×

or

1 review
by: Shanee Dinay

66

2

3

# Week 5 Notes PHYS 5B

Shanee Dinay
UCSC
GPA 3.94

Get a free preview of these Notes, just enter your email below.

×
Unlock Preview

Day 12 and Day 13 of class. Starting to talk about waves
COURSE
Intro to Physics II
PROF.
A.Steinacker
TYPE
Class Notes
PAGES
3
WORDS
CONCEPTS
Intro to Physics, Physics, physics 2, waves
KARMA
25 ?

## 2

1 review
"You can bet I'll be grabbing Shanee studyguide for finals. Couldn't have made it this week without your help!"
Marjory Gorczany Sr.

## Popular in Physics 2

This 3 page Class Notes was uploaded by Shanee Dinay on Saturday February 6, 2016. The Class Notes belongs to PHYS 5B at University of California - Santa Cruz taught by A.Steinacker in Fall 2015. Since its upload, it has received 66 views. For similar materials see Intro to Physics II in Physics 2 at University of California - Santa Cruz.

×

## Reviews for Week 5 Notes

You can bet I'll be grabbing Shanee studyguide for finals. Couldn't have made it this week without your help!

-Marjory Gorczany Sr.

×

×

### What is Karma?

#### You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/06/16
Day 12 ­ 2/1/2016  Topics for Midterm  ­ fluids of all kinds, not differential equations  ­ harmonic oscillator, up to damping  ­ simple harmonic motion  ­ some problems with damping and resonance after exam  ­   Read 15.1, 15.2, 15.4    Waves  y(x, t) = Asin(kx ­ wt)  displacement amplitude of displacement  t = 0  y(x, t) = Asin(kx)  x = 0  y(x=0, t) = Asin(­wt) = ­Asin(wt)  y(x, t=0) = y(x + λ, t=0)  Asin(kx) = Asin[k(x+λ)]  kλ = 2π  2π The wave number k =  γ   Asin(wt) = Asin[w(t+T)]  wT = 2π → w =  2π = rad angular frequency  T s frequency f →  f =    T1 Ex. v​w​= 0.5 cm/s A = 1cm T = 8s λ = 4cm  k =  π rad ω  =  2π =  π rad  2 cm T 4 cm y(x, t) = 1 cm sin ( π rax − π rat)  2 cm 4 s verify, does 4(x = 0, t = 0) = ? graphs says no!  Initial Phase  Phase φ  =  kx  −  ωt y(x,t) = Asin(φ  + φ )o π π π sin(kx ­ ωt+  )2= sin(φ)cos( ) + c2s(φ)sin( )  2 Ex. y(x, t) = Asin(kx ­ wt) = Asin(x ­ t)k = 1, w = 1    t = 0 y(x, 0) = Asinx  t = π y(x,  ) = Asin(x ­  ) = Asinxcos( ) ­ Acosxsin( )  π 2 2 2 2 2 y(x,  ) = ­Acosx  2 y = Asin(kx ­ wt) ← is a right traveling wave  y = Asin(kx + wt) ← is a left traveling wave  Speed of the Wave    dy dx dt = 0 = Acos(kw ­ wt)[k dt ­ w]  dx dx v(t) if dt ­ w = 0 dt = vw  w w vw​=  kright traveling vw​ = ­k left traveling  Superposition of Waves    Day 13 ­ 2/3/2016  Physics 5b    Women in Physics Mentoring Sign­Ups    y(x,t) = Asin(kx ­ wt + φ o  2π 2π k =  γ w =  T  = 2πf  Example. String  2g T s T​s​ 5N linear density: u  =  m v​w​=  u  √ f = 100 Hz A = 2mm  y(x, t) = Asin(kx ­ wt + φo)  w = 2π f = 200π rad/s  5N vw​=  2 • 10 kg/m0 m/s  √ 2πf k =  γπ vw​=  k=  2π/γ= f • γ  w 200 rad/s k =  w  =  50 m/s = 4π rad/m  t = 0, x = 0  y(x=0,t=0) = A  A = Asin(kx + wt + φ )o φ  =     2 y(x, t) = 2mm sin(4π rmdx ­ 200π rsdt + 2)  y1​= Asin(kx ­ wt) y2​= Asin(kx + wt)  t = π wt =  •  =   π 8 T 8 4 y​(x,  ) = Asin(kx ­  )  y​ (x,  ) = Asin(kx +  )  1​ 8 4 2​ 8 4 once wave shifts A gets smaller  Standing Waves  1. closed closed system  y1​+ y2​= Asin(kx ­ wt) + Asin(kx + wt) = ​ynet​2Acos(wt)sin(kx)  nodes at both ends  y(o, t) = y(L, t) = 0  2π y(x = L, t) = 2Acos(wt)sin(kL) = 0 kL ­ Cπ λNL = nπ  2L vw λ n   n fn  =  n2L  λ1 n = 1, λ  = 2L, L =  2L γ  2. open open system  y​(x, t) = 2Acos(wt)cos(kx)  net​ y(x = 0) = 2Acos(wt) antinode  x = L we also want y(x = L, t) = antinode cos(kL) = ±, kL = nπ  2L λ n n   3. closed open system  y(x, t) = 2Acos(wt)sin(kx)  closed node at 0, and open at L  need antinode at x = L for all t sin(kL) = ±1 kL = (2n + 1)   π 2 2πL  =  (2n + 1)π λn= 4L  for n = 1, 3, 5, …   λn 2 n count quarter wave lengths

×

×

### BOOM! Enjoy Your Free Notes!

×

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

## Why people love StudySoup

Bentley McCaw University of Florida

#### "I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Kyle Maynard Purdue

#### "When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the material...plus I made \$280 on my first study guide!"

Steve Martinelli UC Los Angeles

#### "There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

#### "It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!
×

### Refund Policy

#### STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

#### STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com