New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Week Three Notes

by: Allison Nguyen

Week Three Notes BIOL 1110 001

Allison Nguyen
University of Memphis
GPA 3.92

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Week Three includes: Lipids, Membrane Structure, and Cell Structure (prokaryotes and eukaryotes)
General Biology I
Class Notes
General Biology I
25 ?




Popular in General Biology I

Popular in Biology

This 8 page Class Notes was uploaded by Allison Nguyen on Monday February 8, 2016. The Class Notes belongs to BIOL 1110 001 at University of Memphis taught by Taller in Spring 2016. Since its upload, it has received 24 views. For similar materials see General Biology I in Biology at University of Memphis.

Similar to BIOL 1110 001 at University of Memphis


Reviews for Week Three Notes


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/08/16
Allison Nguyen University of Memphis BIOL 1110 Taller Week 3 Notes ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ LIPIDS ­ Lipids: nonpolar hydrophobic organic molecules that are insoluble in water ­ high proportions of nonpolar carbon­hydrogen bonds ­ long­lipid chains cannot fold like proteins to protect their nonpolar­hydrophobic  portions away  from aqueous environments ­ Examples: storage fats, oils, vitamins FATS = HYDROPHOBIC MOLECULES ­ Fats molecules are made of three fatty acids and a glycerol molecule ­ Fatty acids: long­chain hydrocarbons with carboxylic acid (COOH) at one end  ­ Glycerol: three­carbon polyalcohol (three hydroxide groups) ­ Dehydration synthesis attaches fatty acids and glycerol together to form a fat molecule ­ Fat molecules are triglycerides ­ triglyceride: one glycerol backbone with three fatty acids SATURATED AND UNSATURATED FATS ­ Saturated fats: triglycerides with the maximum number of hydrogen atom bonds with carbon chain ­ when internal carbon atoms are bonded to at least two hydrogen atoms ­ Unsaturated fats: fatty acids with double bonds between one or more pairs of successive carbon atoms ­ monounsaturated: fatty acid with one double bond ­ polyunsaturated: fatty acid with more than one double bond ­ Double bonds in fatty acids changes the behaviors of the fat molecules due to the lack of rotation with double  carbon bonds (C=C) ­ single carbon bonds can rotate(C­C) OTHER LIPIDS ­ Terpenes: long­chain lipids that are components of many biologically important pigments ­ Examples: chlorophyll, rubber, and visual pigment retinal ­ Steroids: composed of four carbon rings ­ Examples: testosterone, estrogen, hormones ­ Prostaglandins: a group of about 20 lipids that are modified fatty acids  ­ two nonpolar “tails” attached to a five­ carbon ring ­ act as local chemical messengers in several vertebrate tissues ENERGY­STORAGE MOLECULES ­ animals consume carbohydrates for energy; excess is converted to glycogen or fat for future use ­ humans gain weight because their need for energy decreases as age increases due to less activity; less energy is  needed and the excess carbohydrates convert to fat PHOSPHOLIPID MEMBRANES ­ the core of all biological membrane ­ contains three kinds of subunits: Glycerol, fatty acids, phosphate group ­ Glycerol: three­carbon alcohol where each carbon has a hydroxyl group; forms the backbone of the phospholipid  molecule ­ Fatty acids: long chains of hydrocarbon groups (­CH2) ending in a carboxyl group (­COOH); two fatty acids are  attached to the glycerol backbone ­ Phosphate group: (­PO 4 attached to one end of the glycerol ­ The phosphate group is a polar “head”; two long, nonpolar “tails” at the other end ­ Micelles: nonpolar tails of nearby lipid molecules move away from the water and face inward Allison Nguyen University of Memphis BIOL 1110 Taller ­ in phospholipids, two layers of molecules line up with hydrophobic tails of each layer facing inwards where the  hydrophilic heads facing outward  lipid bilayer formed  ­ lipid bilayer: phospholipids creating ­ lipid bilayers are the basic framework of biological membranes ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ MEMBRANES FLUID MOSAICS ­ Phospholipid sheets form lipid bilayers which are the foundation of a cell’s membrane  ­ phospholipids have glycerol linked to two fatty acids and a phosphate group ­ phospholipid membranes permit the passage of substances in and out of the cell ­ two proteins are inserted in the lipid bilayer: ­ peripheral: associated within the membrane and float on the lipid bilayer ­ integral: inserted in the membrane and flow in the membrane FOUR MEMBRANE COMPONENTS ­ there are four membrane components: 1. phospholipid bilayer ­ permeability bilayer ­ unsaturated fatty acids = increase fluidity ­ easier to pack because there is more space ­ saturated fatty acids = decrease fluidity ­ not as easy to pack because everything is close ­ cholesterol makes space to help regulate the membrane fluidity ­ effect depends on temperature:  ­ warm temperatures = decrease in fluidity ­ cool temperatures = increase in fluidity 2. transmembrane proteins ­ carriers: move in and out with energy ­ channels: move through; allows ions to pass ­ receptors: cell communication; transcripts info 3. interior protein network ­ cell shape 4. cell­surface markers ­ “self” identifiers: bacteria is noticed as not “self” and creates proper response to fight it ­ glycoproteins ­ glycolipids  MEMBRANE FUNCTION PROTEINS ­ Transporters: most are highly selective ­ Enzymes: catalyze into products ­ Cell­surface receptors: sensitive to chemical messages ­ Cell­surface identity markers ­ Cell­to­cell adhesions proteins: some proteins glue themselves to other proteins permanently or temporarily ­ Cytoskeleton anchors: target and tags proteins to stay inside  TRANSMEMBRANE DOMAINS HAVE NONPOLAR AMINO ACIDS ­ Transmembrane proteins outside have lipid interactions that are charged ­ Transmembrane proteins inside have lipid interactions that are uncharged Allison Nguyen University of Memphis BIOL 1110 Taller ­ Proteins anchoring in the bilayer: ­ modified lipids that have (1) nonpolar regions inserted into the lipid bilayer and  (2) chemical bonding domains  ­ Transmembrane domains: hydrophobic region of transmembrane protein that anchors in the membrane ­ composed of hydrophobic amino acids  ­ usually arranged in alpha­helices ­ Pores:  ­ nonpolar regions with beta­pleated sheets ­ beta­pleated sheets are arrange into a cylinder that allows polar water molecules to pass through ­ amino acids on the surface must be charged as well ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ PROKARYOTES ORGANIZATION ­ Three basic shapes of prokaryotes ­ bacillus: rod­shaped ­ coccus: spherical or ovoid shaped ­ spirillum: long and helical shaped ­ Gram stains detect peptidoglycans to help determine which group the bacteria will fall under ­ gram positive: thick layer of peptidoglycans and stain purple ­ simple cell wall ­ gram negative: thin layer of peptidoglycan and does not retain the purple dye ­ stained by red counterstain ­ agent causing the plague ­ more complex cell wall than gram positive ­ Gram stain is an easy way to identify infections then determine what to do next ­ gram (­) are recognized by the immune system because of LPS (lipopolysaccharide)  COMPLEXITY IN ORGANIZATION ­ S­layer: helps prokaryotes stick (adhesion) ­ some bacteria and most archaens ­ Capsule: gelatinous layer for adhesion to surfaces ­ prevents recognition by immune system ­ Flagella: helps movement ­ simpler than those in eukaryotes ­ Pili: hair­like structure on some gram (­) bacteria ­ a way bacteria exchanges genetic information ­ helps attachment and conjunction INTERNAL ORGANIZATION ­ Internal membranes: invaginated regions ­ invaginated = pushed inside and folded on itself ­ Nucleoid region: lack nuclei ­ circular chromosomes ­ some have plasmids ­ Ribosomes: protein synthesis ­ smaller than those in eukaryotes ­ differ in protein and RNA content ­ target for some antibiotics DIFFERENCES BTWN PROKARYOTES AND EUKARYOTES Allison Nguyen University of Memphis BIOL 1110 Taller Prokaryotes ­ unicellular ­ most are less than 1 micrometer ­ single circular chromosome and no nucleus ­ binary fission ­ cytoplasm without internal compartments ­ simple flagella Eukaryotes ­ multi­cellular ­ greater or equal to 10 micrometers ­ membrane­bounded nucleus with linear chromosomes ­ mitosis ­ cytoplasm with internal compartments ­ complex flagella and cilia ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­ EUKARYOTES EUKARYOTIC CELL STRUCTURAL ELEMENTS ­ plasma membrane: lipid bilayer ­ cytoplasm: contains nucleus and organelles ­ organelles: structures with specific functions ­ cytoskeleton: anchors organelles, maintain cell shape, role in mov’t ­ nucleus: houses DNA packages in chromosomes ­ endomembrane system: produces internal compartments ­ vesicles: membrane­bounded sacs that store and transport materials ­ cell walls : composed of cellulose ­ chloroplasts: site of photosynthesis ­ central vacuoles: stores water ­ plasmodesmata: openings in cell wall that connects to the cytoplasm ­ centrioles: important in mitosis NUCLEUS ­ houses genetic material ­ many nuclei with nucleolus which is the site of rRNA synthesis and seen when cells are preparing to make a lot of  proteins ­ nuclear envelopes have two phospholipid bilayers ­ outer membrane connects with the ER ­ nuclear pores: regulate entry ways that allow easy movement for ions, etc other materials in and out ­ DNA is divided into linear chromosomes that interact with histone proteins to form chromatin ­ DNA packaging helps regulate gene expression  ­ to change gene expression you would have to unpack DNA RIBOSOMES ­ universal organelle ­ proteins are synthesized on ribosomes in the cytoplasm ­ 2 subunits: large and small ­ subunits are composed of rRNA and proteins ­ protein synthesis requires: ­ mRNA to code info from DNA ­ tRNA to carry amino acids Allison Nguyen University of Memphis BIOL 1110 Taller ­ the location depends on the type of protein ­ free in the cytoplasm: ­ cytoplasmic proteins ­ nuclear proteins ­ mitochondrial proteins ­ other organelles not associated with ER ­ associated with the ER ­ membrane proteins ­ proteins in the endomembrane system ­ proteins for export ENDOMEMBRANE SYSTEM ­ biggest fundamental difference between prokaryotes and eukaryotes ­ endo­ means “inside” ­ includes the endoplasmic reticulum and golgi apparatus ­ divided compartments ENDOPLASM RETICULUM ­ rough: (RER)  ­ ribosomes attaches to the surface ­ synthesize proteins that secrete, sent to lysosomes or plasma membrane ­ smooth: (SER) ­ few bound ribosomes ­ synthesize steroids ­ stores calcium GOLGI APPARATUS ­ flattened attacks of interconnected membranes ­ packages and distributes proteins ­ faces: cis face and trans face ­ vesicles transport molecules to destinations PROTEIN TRANSPORT ­ through endomembrane 1) vesicles fuses with cis face 2) proteins are modified, packaged, and released from trans face 3) vesicles travel out the plasma membrane and are released LYSOSOMES ­ compartmentalize destructive enzymes ­ gets rid of harmful material ­ fuses with organelles  recycles and destructs (phagocytosis) ­ linked with T­Sachs disease (lysosome defect) ADDITIONAL ORGANELLES ­ microbodies like peroxisomes ­ help get rid of toxic molecules ­ contain enzymes involved in fat break down ­ produce hydrogen peroxide ­ hydrogen peroxide by catalase ­ proteasomes recycle proteins Allison Nguyen University of Memphis BIOL 1110 Taller ­useless/damaged proteins are recycled ­ ubiquitin tags identify proteins needed to be recycled VACUOLES ­ storage ­ swell when plants have water issues ­ volume of vacuoles will tell the water status of cell MITOCHONDRION ­ in all eukaryotes ­ membrane­bounded ­outer ­intermembrane ­ inner ­ matrix ­ has its own DNA that is circular ­ can make proteins CHLOROPLASTS ­ plants and some other eukaryotes ­ chlorophyll used for photosynthesis ­ there are 2 membranes surrounding: ­ thylakoids: membranous sacs within the inner membrane ­ grana is stacks of thylakoids ­ leucoplast: bulk storage sites; synthesis for starch, fats, and amino acids ENDOSYMBOSIS AND ENDOSYMBIOTIC THEORY ­ eukaryote organelles evolved by symbiosis ­ 2 cells were each free­living ­ interaction mutually beneficial ­ prokaryotes were engulfed by and became a part of another ­ evidence for mitochondria and chloroplasts 1) organelle size and shape similar to prokaryotes 2) binary fissions and independent 3) has its own DNA 4) host cell cannot host new mitochondria or chloroplasts 5) use prokaryotes variation of genetic code 6) free­living prokaryotes relatives of mitochondria and chloroplasts ­ endosymbiotic theory: ­ hypothesis tested with constant results ­ evidence strongly supports how we have mitochondria and chloroplasts ­ endomembrane system has two parts: ER and Golgi CYTOSKELETON ­ network of protein fibers ­ supports shape ­ keps organelles in fixed locations ­ dynamic 3 TYPES OF FIBER ­ actin filaments Allison Nguyen University of Memphis BIOL 1110 Taller ­ 2 protein chains twined together ­ movement ­ microtubules ­ dimers of alpha and beta tubulin ­ movement of cell and material within ­ largest ­ connected to motor proteins and ATP ­ used for transport ­ intermediate filaments ­ size btwn actin and microtubules ­ very stable CENTROSOMES AND CENTRIOLES ­ centrosomes: surrounds centriole pair in almost all animal cells ­ anchoring to sort chromosomes ­ microtuble­organizing center ­ animal cells and protists have centrioles ­ plants and fungi lack centrioles CELL MOVEMENT ­ actin filaments and/or microtubles ­ prokaryote flagella ­ simple ­ one or more per cell ­ eukaryote flagella and cilia ­ 9 + 2 arrangement of microtubles ­ complex ­ short and numerous cilia ­ tied to movement of actin filaments, microtubules, or both MOLECULAR MOTORS ­ motor proteins transport vesicles along microtubles ­ two types of motor molecules: ­ dynein (center) ­ kinesin (surface) ­ 4 things need 1) need something to transport (vesicle of some kind) 2) motor protein depending on where it needs to go 3) connector molecule (protein) to hold 4) microtubles: “railroad track” EUKARYOTIC CELL WALLS ­ many plants, fungi, and protists ­ plants and protists  cellulose ­ fungi  chitin ­ plants  primary and secondary wall structures EXTRACELLULAR MATRIX ­ animal cells lack cell walls ­ secrete mix of glycoproteins into space around them ­ glycoproteins provide info to stay in one location ­ variety of proteins for recognition Allison Nguyen University of Memphis BIOL 1110 Taller ­ calogen = abundant ­ keep dermal attached ­ protects the layer over the cell surface ­ influence cell behavior ­ intergrins link ECM ­ provides signaling information CELL CONNECTIONS ­ cells communicate with each other to regulate functions ­ communications help tissue do certain tasks ­ tight junctions: connect plasma membrane of an adjacent cell ­ does not allow paracellular leakages ­ no movement between 2 cells ­ adhesive junctions: attaches cytoskeleton of adjacent cells ­ Velcro ­ signal connections ­ cytoskeleton proteins needed ­ can move small materials in between two cells ­ communication junctions: passage of chemical or electrical signals between cells ­ connects cytoplasm ­ open anc closes in response ions, molecules, and electrical impulses ­ helps make tissues do one function all at one time ­ gap junctions: activity between tissues which communicate to function at one time ­ heart ­ neurons ­ retina ­ plasmodesmata: gaps in plant cell walls ­ lined with plasma membranes ­ contains central tube that connects ER of the 2 cells ­ arrhythmias have communication disruptions in communication junctions ­ no blood pumps to the heart ­ electrical signals ­ gap junction example ; injecting dye into one cell spreads to the other cells that are touching it


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Jennifer McGill UCSF Med School

"Selling my MCAT study guides and notes has been a great source of side revenue while I'm in school. Some months I'm making over $500! Plus, it makes me happy knowing that I'm helping future med students with their MCAT."

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.