New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Chapter 11 Notes

by: Rachael Couch

Chapter 11 Notes Biol 3302

Rachael Couch
GPA 3.9
View Full Document for 0 Karma

View Full Document


Unlock These Notes for FREE

Enter your email below and we will instantly email you these Notes for Eukaryotic Molecular and Cell Biology

(Limited time offer)

Unlock Notes

Already have a StudySoup account? Login here

Unlock FREE Class Notes

Enter your email below to receive Eukaryotic Molecular and Cell Biology notes

Everyone needs better class notes. Enter your email and we will send you notes for this class for free.

Unlock FREE notes

About this Document

From in class and lecture slides in organized word format!
Eukaryotic Molecular and Cell Biology
Burr; Srikanth
Class Notes
Srikanth, UTD, mol cell, eukaryotic moleculer and cell biology, Cell Bio, Cell Biology, ion channels, transport, ion transport




Popular in Eukaryotic Molecular and Cell Biology

Popular in Biology

This 7 page Class Notes was uploaded by Rachael Couch on Wednesday February 10, 2016. The Class Notes belongs to Biol 3302 at University of Texas at Dallas taught by Burr; Srikanth in Spring 2016. Since its upload, it has received 16 views. For similar materials see Eukaryotic Molecular and Cell Biology in Biology at University of Texas at Dallas.


Reviews for Chapter 11 Notes


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/10/16
Chapter 11: Transmembrane Transport of Ions and Small Molecules Pumps/transport  Active transport – uses ATP to move ions against their concentration gradient  Secondary active transport  ­ moves ions against concentration gradient but does not use  ATP (antiporter)  Antiporter ­ moves 2 molecules in different directions; one goes down the gradient and  the other goes against the gradient ATP­powered pumps P­class pumps  Structure o 2 alpha subunits and 2 beta subunits – tetramer   P­class is named because at least one of the alpha subunits gets  phosphorylated   Each alpha subunit has an ATP­binding site  Alpha subunit ­ 3 domains   N domain = nucleotide binding domain o ATP binds this domain   P domain o Aspartate is phosphorylated in this domain  A domain = actuation domain  o Phosphorylation causes a conformational change in the P  site which changes the conformation of the A site which  causes a conformational change in the transmembrane  segment o Net effect: N “conveys” the conformational change  (“transmits the message) from the P to the transmembrane  segment  Beta subunit ­ help the alpha subunit fold correctly  Not involved in ion movement but a mutation in the beta subunit  could affect the movement of ions because it could cause the entire + protein to fold improperly and be completely nonfunctional   H  pump o Plasma membrane of plants, fungi, bacteria  H /K  pump o Apical plasma membrane of mammalian stomach o Pumps a cation out (K ) for every proton pumped in   Na /K  ATPase pump o Plasma membrane of higher eukaryotes o Net effect: 3 Na  from cytosol to exterior and 2 K  from exterior to cytosol  Active transport ­ both sodium and potassium are pumped against their  concentration gradient  + o Protein synthesis requires a high K  concentration o Steps   1) Opening in the transmembrane segment faces the cytosol  2) Sodium binds first  The pump has a higher affinity for sodium than potassium when  not phosphorylated  3) ATP binds the N domain  4) Phosphate is transferred from ATP to aspartate in P domain  ADP is released  5) Phosphorylation induces a conformational change that is transmitted by  the A domain  Opening is now facing the exterior  6) Potassium binds the opening and sodium leaves  In phosphorylated form, the pump has a higher affinity for  potassium than sodium  7) Potassium binding causes dephosphorylation  8) Dephosphorylation induces a conformational change (transmitted by A  domain)  9) Potassium is released into the cell   Pump is now back to where it started – ATP can bind and start the  process over  o Inhibition   When inhibited by drugs (ouabain/digoxen), the cytosolic potassium  concentration decreases and the cytosolic sodium concentration increases + 2+  This causes the Na /Ca  antiporter to function less efficiently (pumps  sodium in and calcium out of cells)    Increased Ca  concentration in the cytosol which causes the  2+ muscle to contract strongly   Ca  ATPase pump o Structure   10 membrane spanning helices in each alpha unit  AA in 4 of these helices form 2 high affinity calcium binding sites   One site is formed from negatively charged oxygen atoms from the carboxyl groups of glutamate and aspartate as well as from water  The other site is made from main and side chains oxygen atoms o 2 locations  Plasma membrane of all eukaryotic cells  Sarcoplasmic reticulum (SR) membrane in muscle cells   SR – special kind of smooth ER in muscle o Free calcium concentrations  Very small in the cytosol  Higher in contracting cells than resting but still low  Relatively high in the sarcoplasmic reticulum (stores calcium)  o Net effect  2 calcium ions move against their concentration gradient o Steps (same process as Na /K  ATPase pump) 2+  Starts with opening facing the cytosol, ATP binds, Ca  binds, induces  phosphorylation  conformational change, calcium released outside   dephosphorylation  conformational change 2+ o Calmodulin – regulates all Ca  pumps  Allosterically activates ATPase pump in the plasma membrane when  bound to calcium   Catalytic alpha subunit is similar to the alpha subunit of the muscle SR  2+ Ca  pump  Necessary because excess calcium in the cell causes excessive  contractions ­ must be tightly regulated   Process 2+  Rise in Ca  concentration (from the SR lumen) causes calcium to  bind to Calmodulin   Calmodulin (with calcium bound) then binds to the calcium pump  in the plasma membrane and activates it   Pump then pumps out calcium to return to normal resting state  (low conc. calcium)  V­class proton pumps  Function to maintain low pH  Structure o 2 domains: Hydrophilic cytosolic domain (V ) a1d transmembrane domain (V₀)   Binding and hydrolysis of ATP by the subunit in V1 provides the energy  for pumping of protons through the proton conducting channel   No phosphorylation  Locations o Vacuolar membranes in plants, yeast, other fungi o Endosomal and lysosomal membranes in animal cells o Plasma membrane of osteoclasts and some kidney tubule cells   Storage of metabolites and acidity in plant vacuoles o Higher concentration of metabolites in the vacuoles than in the cytoplasm but  metabolites are still moved in against their concentration gradient o Lumen of the plant vacuole is acidic (pH = 3­6) cytosol 7.4 o In the vacuoles – 1 V­class ATP powered proton pumps (sodium, calcium, and  sucrose), 1 pyrophosphate­powered pump, 3 antiporters and 2 ion channel  proteins o Vacuoles have a high concentration of protons and sucrose  o Steps  1) Protons are pumped into the vacuole (against their gradient) by H ­ pumping proteins that are powered by ATP hydrolysis and pyrophosphate  hydrolysis  2) Protons are pumped down their concentration gradient from the inside  of the vacuole to the cytosol  Pumping the protons out does NOT change the pH   3) The energy gained from moving the protons down their concentration  gradient is used to move sucrose, sodium, and calcium against their  concentration gradient   4) The movement of positively charged molecules (sodium, calcium, and  sucrose) into the vacuole causes chloride and nitrate to be pumped in via  ion channel proteins   This acidifies the lumen – not the build­up of protons  Lysosomes o Uses 1 ATP­powered V­class pump and a chloride ion channel o 1) ATP is used to pump protons from the cytosol into the lysosome  This creates a potential difference/electrical potential (of 20mV) between  the inside (+) and outside (­)  = chemical energy   Pumping the protons in does NOT change the pH, it only creates a  potential difference   Still neutral pH o 2) The electric potential causes chloride to come into the lumen of the lysosome  This acidifies the lumen and removes the electric potential F­class proton pumps  F 1 0ATP Synthase o In the inner mitochondrial membrane in eukaryotes and plasma membrane of  prokaryotic cells o Makes by using a proton gradient  Moving protons down their concentration gradient moves a rotor which  drives the catalytic portion of the pump  production of ATP  Other location ­ thylakoid membrane of chloroplast ABC superfamily  2 transmembrane domains o Each transmembrane domain has 10 membrane spanning helices which form the  channel for the metabolite to move from one side of the membrane to another  2 cytosolic ATP­binding domains  Involved in the transport of metabolites (amino acids, vitamins, sugars, peptides)  Location o Bacterial plasma membranes (amino acids, sugar, and peptide transporters) o Mammalian plasma membranes (transporters of phospholipids, small lipophilic  drugs, cholesterol, other small molecules)   E.coli BtuCD protein – a vitamin B12 permease o AKA permease because it helps the vitamin permeate from the outside o Brings vitamin B12 from the outside to the inside of the cell o The quantity of permeases in the cell membrane is (regulated) inducible by   1. Concentration of the nutrient in the medium  2. Metabolic needs of the cell  Won’t bring in the nutrient unless deprived  o Vitamin B12 flows through a porin protein to the periplasmic space   Porin proteins allow small molecules to flow through the outer membrane o A soluble Vitamin B12 binding protein binds to the vitamin and directs it to the  transmembrane domains of the permease  o Permease then carries the vitamin across the plasma membrane  Mammalian ABC transporters o All flippases  o Same structure as prokaryotes o Discovered from multi drug resistance (MDR)  Drug resistance comes from the ability to transport the drugs out of the  cell into a different area to be degraded  Can transport drugs because they are similar in structure to endogenous  toxins o 50 different mammalian transporter proteins are known  o Normal function of these proteins is to transport various natural and metabolic  toxins into the bile, or kidney or lumen of the intestine  o In general, defect in ABC protein  disease o 4 different human ABC proteins Protein Tissue expression Function Other ABCB1 (MDR1) Adrenal, kidney, brain Exports lipophilic drugs 170,000 MW ABCB4 (MDR2) Liver Exports phosphatidyl choline into bile ABCB11 Liver Exports bile salts into bile CFTR Exocrine tissue Transports Cl ions Defect  cystic fibrosis  Experiment studying ABCB4 (MDR2)  o Secretory vesicles that contain ABCB4 protein are isolated o The flippase faces the cytoplasm, with the APase domains on the cytosolic side  o 1) Fluorescent phospholipids (PC) are added  Position themselves in the membrane bilayer, mostly in the cytosolic  leaflet  o 2) ATP is added to half of the vesicles (those without ATP serve as a control)  With ATP – All the fluorescent phospholipids move to the inside of the  vesicle  Without ATP – all the phospholipids remain on the outside  High fluorescence is seen in both cases   An see fluorescence from both leaflets o 3) All vesicles are quenched   Quenching only works on the cytosolic (outside) leaflet  In the group without ATP, more fluorescence is lost because most of the  labelled phospholipids were on the outside and thus were quenched o 4) Add detergent (breaks open membrane) to all and quench  Causes the bilayers to form micelles which exposes all of the  phospholipids – only tails on the inside  Both groups go to 0 fluorescence o Graph/diagram    o Conclusion  Contains flippase activity  If not, there would not be a difference between ATP and no ATP added   From this, it is inferred that all the ABC proteins have flippase activity  because they are all structurally similar  o Same experiment with “inside­out” secretory vesicles (vesicles outside the cell)  Cytosolic leaflet faces inside, exoplasmic leaflet outside   ABCB4 protein still faces the cytoplasmic leaflet with the ATPase  domains now on the inside of the vesicle  PC integrates mostly into the exoplasmic leaflet  ATP is added to some – only moves the few on the inside to the  outside  Those w/o ATP – mostly stay on outside – a few remain on inside  Outside (exoplasmic leaflet) is quenched  With ATP loses ALL fluorescence  W/o ATP lose almost all (low or non­detectable levels) of  fluorescence Maintenance of cytosolic PH  Involves several antiporters   Na HCO /Cl3antiporter increases cytosolic pH + 3­ ­ o Imports one Na  ion and a HCO  ion in exchange for the export of one Cl ion o The HCO  ion 3issociates into CO and OH 2  o The OH combines with the H  to form water o This raises the overall pH of the cytosol  Na /H  antiporter also increases cytosolic pH +  + o Couples entry of one Na ion with the export of one H  ion  At high pH(>7.5) anion antiporter Cl/HCO  comes i3to play ­ o This protein exports one HCO  ion f3r import of every Cl­ ion  Cytosolic pH is maintained at 7.4


Buy Material

Are you sure you want to buy this material for

0 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Jennifer McGill UCSF Med School

"Selling my MCAT study guides and notes has been a great source of side revenue while I'm in school. Some months I'm making over $500! Plus, it makes me happy knowing that I'm helping future med students with their MCAT."

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.