New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

BIOL 1030 Topic Six Notes

by: Kassandra Balsters

BIOL 1030 Topic Six Notes BIOL 1031 - 001

Marketplace > Auburn University > Biology > BIOL 1031 - 001 > BIOL 1030 Topic Six Notes
Kassandra Balsters
GPA 3.89

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These notes cover BIOL 1030 topic six.
Organismal Biology Laboratory
Scott Anthony Bowling
Class Notes
auburn, Bowling, notes, Topic, Six
25 ?




Popular in Organismal Biology Laboratory

Popular in Biology

This 4 page Class Notes was uploaded by Kassandra Balsters on Monday February 15, 2016. The Class Notes belongs to BIOL 1031 - 001 at Auburn University taught by Scott Anthony Bowling in Fall 2015. Since its upload, it has received 45 views. For similar materials see Organismal Biology Laboratory in Biology at Auburn University.


Reviews for BIOL 1030 Topic Six Notes


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/15/16
BIOL1030 Topic Six Notes WATER AND MINERAL TRANSPORT  Overview—How does water climb a 10-story tree? o Capillary action pulls water partway up tubes  Thinner tube=greater height  But only about 1 meter for xylem width o Transpiration (evaporation of water, mainly from leaves)  Continuous water column  Remove water at leaf: negative pressure potential (vacuum)  Tensile strength of water column=pull water up to replace  Water potential concept  Higher water potential at roots  Movement is from high potential to low potential o Root pressure: active transport of ions into roots, leads to water coming in by osmosis  Active transport of ions into roots  Leads to water coming in by osmosis  May see guttation from this o Net result  Energy drives the movement of xylem sap (water and dissolved minerals)  Energy enters system by evaporation (ultimately from sun)  Energy used to do work of pulling water up against gravity  Analogous to sucking water up a straw; the stem is the straw  Energy also provided by plant to push water in (root pressure)  Absorption by roots o Most water enters through root hairs (large collective surface area) o Ions are actively pumped into root hairs  Proton pumps in root hair plasma membrane  Work against concentration gradient  Use ATP for energy to do work  Concentration higher than in surrounding soil  Keeps root hairs turgid  Supplies ions for transport in xylem (more on this later) o Osmosis: water moves into root to alleviate osmotic imbalance  Enters through cells and intercellular spaces o Provides positive root pressure that moves through plant  Works even without transpiration (even at 100% humidity)  Can cause guttation through special cells in leaves  Never enough to push water at great distances o Two routes:  Apoplastic (outside cells)  Symplastic (within cells) o Endodermal barrier  Casparian strips (suberized) block flow to inside, where xylem is  Water and ions must enter cells of endodermis to get to xylem  Endodermal cells are selective, controlling what reaches xylem  Transpiration from leaves o Over 90% of water taken up through roots lost to evaporation (most of the rest used in photosynthesis) o Mostly, loss is as water vapor through stomata o Control of stomata can be critical  Need water for metabolism and photosynthesis  Need CO2 for photosynthesis  Conflict: open stomata allow CO2 in, but water vapor out o Stomata are controlled by guard cells  Shape changes used for control  Thicker wall on inside than outside causes “bowing” when turgid  Turgid when water accumulates, opening stoma  Turgor maintained as follows:  Active potassium ion uptake by ATP-powered ion channels  Water enters due to osmotic imbalance  Required energy typically provided by chloroplasts  No energy or wilted plant=loss of turgor=closed stomata o Generally, stomata open in morning but not evening or night (certainly no true for all plants; for example, desert plants(  Other factors can regulate transpiration o In some species, CO2 is used  High CO2  loss of turgor  closed stomata (no need to open)  Low CO2  turgid  open stomata (used by plants like cacti) o High temperatures (30 to 34C) cause stomata to close o Stomata closed during dormancy during dry times o Thick, hard leaves with few stomata=less transpiration o Trichomes- cooler and more humid surface=slower water loss o Pits or crypts- water vapor content in them is higher, slows water loss  Mineral movement o Ionic minerals transported with water in xylem o Entry into xylem controlled through endodermal cells o Ionic minerals enter roots by an active process  Roots need oxygen to be able to absorb ions  Specific ion concentrations in plants higher than in surrounding soil  Flooding o Moving water generally not bad, constantly supplies oxygen o Still water presents problem: depletes oxygen in roots  Loss of active pumping at root hairs  Loss of ion entry  May dry out leaves (root pressure needed; endoderm greater barrier)  Flooding Adaptations o Aerenchyma- loose parenchyma with air spaces  Allow oxygen transport to below-water parts  Found in water lilies and others  May always be present, or formed when needed o Larger lenticels o Adventitious roots o Pneumatophores  Spongy, air-filled “knees” from roots, emerging from water  Large lenticels above water allow oxygen to enter  Cypress knees may be these  Many mangrove trees have these  Also help with salt balance FOOD (CARBOHYDRATE) TRANSPORT  Translocation: movement of carbohydrates from where made or stored to where needed  Storage usually as starch, which must be converted to soluble molecules  Movement in phloem: how is it studied? o Radioactive tracers o Aphid stylets  Aphids pierce into phloem to feed  Cut off aphid, leaving stylet, and sample phloem o Pressure flow hypothesis (also known as mass-flow or bulk flow) o Dissolved carbohydrate flow from source to sink o Source- place of dissolved carbohydrate production (leaves, storage organs) o Sink- place of usage (primarily growing areas—root and stem tips, fruits) or storage  Phloem loading o Carbohydrates enter sieve tubes at source by active transport o Energy for transport comes from companion cells o Sieve tube water potential lowered o Creates water potential difference relative to nearby xylem o Water enters sieve tubes by osmosis o Increased turgor pressure in sieve tube pushes solution through them  “Unloading” at sink o Removal of carbohydrates leads to drop in turgor pressure o Drives flow from high water pressure at source to low pressure at sink o Most of water at sink diffuses back into xylem o  Movement in phloem: the facts o Contents: 10-25% dry matter, almost all sucrose (“syrup”) o Moves reasonably fast (up to 1 meter per hour) o


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Anthony Lee UC Santa Barbara

"I bought an awesome study guide, which helped me get an A in my Math 34B class this quarter!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.