New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Biol 2420 Week 8

by: Aurora Moberly

Biol 2420 Week 8 BIOl 2420

Aurora Moberly
GPA 3.91

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These notes cover some of the skeletal muscle system.
Human Physiology
Dr. Paul Pillitteri
Class Notes
Human Physiology
25 ?




Popular in Human Physiology

Popular in Biology

This 3 page Class Notes was uploaded by Aurora Moberly on Sunday February 21, 2016. The Class Notes belongs to BIOl 2420 at Southern Utah University taught by Dr. Paul Pillitteri in Winter 2016. Since its upload, it has received 41 views. For similar materials see Human Physiology in Biology at Southern Utah University.


Reviews for Biol 2420 Week 8


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/21/16
Test 3 3/4/16 Goal: 95 Skeletal Muscle System - Three layers of connective tissue in the muscle belly: - Epimycium: Wrapped around the entire muscle belly, outermost layer - Perimycium: Connective tissue that divides the muscle cells into bundles called fascicles - Endomycium (Basal Lamina): Layer of connective tissue wrapped around each individual muscle cell - All three layers of the connective tissue together are called the Parallel Elastic Component - Two functions of the Parallel Elastic Component: Protection, elasticity to produce force - Tendons: Attach muscle to bones, know as the Series Elastic Component, help to generate force when the muscle is stretched - Muscle Cell: - Sarcolemma: Muscle cell membrane - Skeletal muscle cells are multinucleate (one cell contains multiple nuclei) - Skeletal muscles cells are striated due to the arrangement of proteins in the cell - Muscle cells will run the entire length of the muscle - Looking down the barrel of the muscle cell there are many cylinders called myofibrils - Myofibrils: Bundles of proteins - Two main proteins: Myosin and Actin - Myosin is the thick protein/filament, appears as a dark patch on the myofibril - Actin is the thin protein/filament, appears as a light patch on the myofibril, overlaps with myosin - Creates a Z line/disk that attaches with other proteins - Sarcomere: Functional unit of skeletal muscle that extends from one Z line to the next Z line, contracts the muscle - All myofibrils sacromeres are lined up creating striation on the muscle cell, provides a unified and evenly distributed contraction - Myosin Filament: - Made up of many individual myosin molecules - Myosin molecule has a tail and two heads - Each head has two binding sites: Actin Binding Site (Attaches to the actin filament) and Myosin ATPase Site (Bind ATP and breaks it for energy use) - Once the head breaks ATP it holds onto ADP + P the head is now said to be energized - All the tails of the myosin filament point to the middle and the heads point to the ends - Actin Filament: - Actin molecules strung together in a helix formation - Each actin molecule has a binding site for myosin - Regulatory proteins on the helix: Tropomyosin and Troponin - Tropomyosin: Wraps itself around the actin filament so it covers over the binding sites so it can’t bind with the myosin - Troponin: Has three parts to it T IBinds to actin) T (Tinds to tropomyosin) T C (Binds calcium ions) - Troponin holds onto both the actin and tropomyosin but when calcium binds to TCit causes the troponin shape to change and pulls the tropomyosin off the myosin binding sites to allow myosin to bind to the actin - T-Tubules: Tube extensions of the cell membrane that dive deep into the cell, function is to spread the action potential deep down into the cell - Sarcoplasmic Reticulum (SR): Highly branched membranous sac, its function is to store and release calcium ions - The action potential from the T-Tubules sparks the SR to release the calcium ions - Contraction (Twitch) of a Muscle (Sliding Filament Mechanism): - Excitation-Coupling-Contraction-Relaxation - 1. Stimulus from motor neuron - 2. Action potential initiated and spreads down the sarcolemma - 3. Action potential travels down the T-tubules to hit the SR ++ - 4. SR releases Ca - 5. Ca++ binds to troponin - Troponin shifts tropomyosin to uncover the binding sites on actin - 6. Energized myosin head binds to actin (cross bridge formation) - 7. Myosin head pulls actin across myosin filament - Shortens sarcomere - Spends energy and releases ADP and P - 8. New ATP binds, cross bridge detaches and re-cocks - As long as calcium is present the steps 6-8 will be repeated to create the contraction - Relaxation: - 1. Ca++ is actively pumped back into SR ++ - 2. Ca is removed from troponin - 3. Tropomyosin moves to cover actin-binding sites - 4. Cross bridge cannot form, muscle relaxes to resting length - Muscle Properties: - All or None: In terms of a muscle twitch when the calcium is released from the SR there will be enough to bind with all the troponin and all the binding sites will be uncovered - Treppe: If we allow the muscle to relax and stimulate immediately after we can get a greater force because all of the calcium hasn’t been taken back up to the SR by the time the second stimulation has started - Twitch: -Latent Period: Time between action potential generated on the membrane and when the cell begins to generate force - Contraction Phase: Beginning of force generation to the peak of force generation - Relaxation Phase: Peak of the force generation till the muscle cell is completely relaxed - Motor Unit: How the nervous system is wired to your muscle cells - One muscle cell will only have one neuron innervating it - One neuron will innervate many muscle cells through branching - Motor unit is one motor neuron and all the cells that it innervates


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Kyle Maynard Purdue

"When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the I made $280 on my first study guide!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.