New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

BIO 366 Notes 2/9-2/11

by: Kiley Rosier

BIO 366 Notes 2/9-2/11 BIO 366 (Ecology, Dr. Zac Long

Kiley Rosier
View Full Document for 0 Karma

View Full Document


Unlock These Notes for FREE

Enter your email below and we will instantly email you these Notes for Ecology

(Limited time offer)

Unlock Notes

Already have a StudySoup account? Login here

Unlock FREE Class Notes

Enter your email below to receive Ecology notes

Everyone needs better class notes. Enter your email and we will send you notes for this class for free.

Unlock FREE notes

About this Document

Includes end of Adaptation and Natural Selection notes and Plant Adaptations notes
Dr. Zac Long
Class Notes
Ecology, Biology, plant, Adaptation, natural selection




Popular in Ecology

Popular in Biology

This 8 page Class Notes was uploaded by Kiley Rosier on Monday February 22, 2016. The Class Notes belongs to BIO 366 (Ecology, Dr. Zac Long at University of North Carolina - Wilmington taught by Dr. Zac Long in Fall 2015. Since its upload, it has received 47 views. For similar materials see Ecology in Biology at University of North Carolina - Wilmington.

Similar to BIO 366 (Ecology, Dr. Zac Long at UNCW


Reviews for BIO 366 Notes 2/9-2/11


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/22/16
Tuesday 2/9/2016  Adaptation and Natural Selection    Natural Selection Produces Adaptations   ­target of selection­ the phenotypic trait that selection operates on   ­agent of selection­ cause of fitness differences  ­they studied parent beak depth and offspring beak depth of birds and found correlation  ● proves heritability   ­in 1976 there was a drought on the island where the birds were so there were less seeds and  they had harder shells  ● bill depth became a valuable trait for fitness because only birds with large beaks  could survive   ● caused a shift in mean bill size  ­Directional selection: selection toward an extreme  ● example: the shifting of the mean bill size in birds  ­Stabilizing selection: against both extremes  ● example: babies born too small are more likely to die, and babies born too big  are more likely to die, so the variation of genes is restricted and the genes for big  and small babies become less common, variation gets smaller and smaller over  time  ­Disruptive Selection: separation to two extremes   ● example: a grass species has a tradeoff between competitive ability and  tolerance of metals in their water, it is either good at competing or good at  handling metals in their water   ● causes a separation of selection they can either grow in high metal place or in a  place where they compete, but not both  ● can lead to speciation   ­Positive association mating: genetically like individuals are more likely to be mated with each  other   ● this is possibly a result of like individuals just being geographically closer to each  other  ­negative association mating: genetically unlike individuals more likely to mate  ● example: white female songbirds (which are genetically superior to tan  songbirds) prefer to mate with the tan male songbirds even though they are not  as genetically proficient as the white male songbirds   ● this happens because the white males will not be monogamous and help raise  offspring while the tan males will  ● even though they are genetically inferior, the tan male’s behavior makes them  more desirable to the genetically superior white females.   ­histocompatible genes: genes that code for resistance to diseases  ● humans have the ability to smell these, and will often be more attracted to people  with the opposite ones so their offspring will be more resistant to disease      ­whichever parent puts in the most energy/care for the offspring is the one who chooses the  mate  ● with many species the female takes care of the offspring so the males work to  impress her and she gets her pick  ­monogamy can occur in animals when both male and female equally care for offspring  ● example: birds both sit on the eggs, bring food once they hatch, so birds are  often monogamous  ­fluctuating asymmetry: deviations from bilateral symmetry  ● reflects the ability of a genome to buffer developmental stress  ● genotypes can produce multiple phenotypes due to stressors during development  ○ so humans biologically find more symmetrical people to be more  attractive because they their genomes can handle developmental stress  better   ○ example: data was collected on what dancers males and females found  more attractive and females in particular had a significant preference for  the symmetrical males   ­Mutation: random changes in the genetric materical of an individual, must happen in sex cells  to be passed to offspring  ­Drift: random changes in gene composition that occur at low population densities  ­Migration: movement of individuals between populations  ● mutation, drift and migration all prove evolution is happening   ● natural and sexual selection also prove this  ­Hardy Weinberg Equilibrium­ a null model for what happens in the absence of all five above  factors  ­Genetic differentiation: genetic variation among subpopulations, geographically separated from  other populations   ­Cline: gradual change in phenotype or genotype over a broad geographical change   ­Subspecies: species capable of interbreeding, but do not due to geographic isolation or  differences in time of breeding   ● example: lizard populations of the same species developed completely different  patterns because one population lived where it needs to be camouflaged so it  evolved to have dark colors. The other population lives near a poisonous type of  lizard, so it evolved bright colors to mimic the poisonous lizard. They can  interbreed but are considered subspecies because they have become so  different due to their different habitats   ­Ring species: species where nearby subpopulations can interbreed but two “end” populations  cannot   ­Ecotype­ population adapted to unique environmental conditions (a steep cline)   ● example: temperature change and moisture change on a mountain due to  changing elevations caused plants to adapt so plants that were relatively close to  each other were very different   Adaptations and Trade­offs  ­Trade off: negative correlation between two traits   ● example: the more virulent (able to grow) a bug is, the less likely it is to be transmitted,  and vice versa                                 ● there is a co­evolution between the host and the virus, as the host population becomes  more resistant, the virus becomes less virulent but more transmissive so it can affect  more and find the individuals in the population that have not developed a resistance yet   ­Adaptive Radiation  ● one species gives rise to many species each adapted to different features of the  environment  ○ example: darwin’s finches    Thursday 2/11/2016  Plant Physiology and Adaptations     ­Heterotrophic: consume other organisms for nutrition  ­Autotrophic: organisms that make their own nutrition (sugars usually)  ­plants get the majority of their mass from atmospheric CO2    ­photosynthesis formula: 6 CO2 + 12 H2O ­> C6H12O6 +6O2+6H2O    C3 Leaf  ­C3 leaf is the most basic structure of a leaf, there are other structures that allow for me water  use efficiency   ­xylem: moves water  ­phloem: moves sugars created by photosynthesis  ­mesophyll: area of leaf where photosynthesis mainly occurs  ­chloroplasts: plastid (bound organelle) where photosynthesis occurs   ­chlorophyll: pigment that absorbs light   ­stoma: pores in epidermis that allow gas exchange   ­Epidermis: outermost layer of leaf made of epidermal cells    Photosynthesis consists of two processes:    ­Light dependent reactions   ● in the presence of light, process light energy into ATP and NADPH  ­Light independent (dark) reactions  ● Calvin and benson cycle, use ATP and NADPH to make sugars and regenerate Rubisco  (enzyme that catalyzes the conversion of CO2 into sugars)    Light Reactions  ­12H2O + 12NADP+ + 18ADP + 18Pi → 6O2 + 12NADPH + 18ATP       Photorespiration: when rubisco binds with oxygen      Tradeoff between H2O in and CO2 out     ­Aerobic respiration: breakdown of glucose to harvest energy    Net Photosynthesis  ­carbon balance: balance between uptake of CO2 in photosynthesis and loss in respiration  • 6 CO2 + 12 H2O ­> C6H12O6 + 6 O2+ 6H2O  • C6H12O6 + 6 O2 ­> 6 CO2 + 6 H2O + ATP    ­CO2 respired in zero photosynthetically active radiation (PAR)  ­amount of light needed to reach carbon balance  ­light level at max rate of photosynthesis                            Adaptation Within a Species    Advance regeneration­ seedlings and saplings in the understory    Ability of a plant to survive in low light    Water use efficiency  ­Ratio of C stored to water loss (transpiration)    ­C4: more water use efficient than C3    ● Make more enzymes than rubisco and bundle sheath cells             Carbon Allocation  ­strategy of C investment based on environmental conditions  ­secondary chemical compounds: chemicals produced by plants that don’t play a role in basic  metabolism  Adaptations to low nutrients                                                  


Buy Material

Are you sure you want to buy this material for

0 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Anthony Lee UC Santa Barbara

"I bought an awesome study guide, which helped me get an A in my Math 34B class this quarter!"

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.