New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Chapter 12

by: Alexi Martin

Chapter 12 CHEM 1200

Alexi Martin
GPA 3.58
View Full Document for 0 Karma

View Full Document


Unlock These Notes for FREE

Enter your email below and we will instantly email you these Notes for Chemistry II

(Limited time offer)

Unlock Notes

Already have a StudySoup account? Login here

Unlock FREE Class Notes

Enter your email below to receive Chemistry II notes

Everyone needs better class notes. Enter your email and we will send you notes for this class for free.

Unlock FREE notes

About this Document

these notes cover ch 12 from dr. ma's lecture
Chemistry II
Dr. Alexander Ma
Class Notes




Popular in Chemistry II

Popular in Chemistry

This 5 page Class Notes was uploaded by Alexi Martin on Monday February 22, 2016. The Class Notes belongs to CHEM 1200 at Rensselaer Polytechnic Institute taught by Dr. Alexander Ma in Spring 2016. Since its upload, it has received 66 views. For similar materials see Chemistry II in Chemistry at Rensselaer Polytechnic Institute.


Reviews for Chapter 12


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/22/16
Chapter 12 Liquids     Three phases of water  ­ densities of ice and liquid water, an increased density of water vapr  ­ liquid water is denser then ice  Degrees of Freedom  ­particles have 1/more types of freedom of motion  translational:one position to another, gas  rotational­reorient direction, liquid, gas  vibrational oscillate about a point liquid gas and solid  Solids  ­ packed and fixed­ vibrate  ­ incompressible   ­ retain shape and volume in a new container, cannot flow  ­ crystalline solidsorderly geometric patterns (salt and diamonds)  ­ amorphous solids: ​  no patterns over a long range (plastic and glass  *melting and boiling point at a single temperature are 1st order transitions*  Liquids  ­closely packed but can move  ­incompressible  ­assume volume of a container, do not expand/escape from each other  ~first order reactions­melting/freezing, boiling/condensing, deposition/sublimation~  ~making glass 2nd order transition~  Liquid crystal mesophase  ­ 1st order transition   ­ 2 types­ rod like or disc like  ­ carbonaceous mesophase= tar  Gases  ­free movement­ translational  ­constantly moving  ­can be compressed   ­will fill a container’s shape  Kinetic Molecular Theory  state depends on   1. amount or # of particles  2. strength of attraction between particles, ex­ gases have complete freedom, they can  overcome attractive forces, solids are locked in place, not enough KE, liquids have  limited energy, they can overcome KE a bit however their particles are still attached  3. an increase of energy yields an increase in motion, the more motion the more freedom  they have  KEavg= 3/2RT=3/2KT f ​or 1 mol  Attractive forces  1  ­electrostatic strength varies, depends on kinds of particles, the stronger the forces the more  they will be stationary  ­no material lacks particle motion abs S is positive  KE of Gases  ­ increases it overcomes attraction it will be a gas  ­ an ideal gas=ideal freedom   ­ large spaces between particles   ­ low densities and will be compressionable   KE of Solids  ­ attractive strong forces w/o any motion (vibrational only)  KE of Liquids  ­ partially overcome, limited notion  ­ ▯G=0 @ transition temperature  Phase Changes  ­attractive forces are fixed, change requires changing KE  ­solids melt because KE overcomes almost all forces  ­Gases condensed lower temperature or at higher pressure  ­phase changes are 1st order transitions  Intermolecular attractions  ­strength determines state  ­moderate to strong liquid or solid, weak=gas  ­stronger forces yields higher boiling point or a higher melting point  Attractions?  ­ attractive forces + ion ­ion polar ­polar (Hydrogen bonding)  ­ nonpolar will temperature changes   E= (1/4πE0)(q1q2/r^2)​     Coulomb's Law  ­larger charge=stronger attraction  ­smaller in comparison to bonding, larger distances  Trends in attraction  ­stronger larger E separate particles (list below increasingly stronger)  dispersion​­ temporary polarity in molecules unequal e­ distribution  dipole­dipole­ permanent polarity in molecular structures  hydrogen bonding​ ­ H attracted to extremely electronegative atoms  ion dipole­ + ions surrounded by water example NaCl (aq)  Dispersion​ (weakest force)  ­fluctuations of a temporary dipole, caused by excess e­ density and depeleted e­ density  ­also called London Forces  ­size polarizability (large electron cloud)  ­shape of the molecule­size  ­all atoms have them   ­only last for a period of time  Dipole­Dipole ​(weaker force)  ­ polar permanent dipole  2  ­ bond polarity and shape  ­ dipole moment always remains in induced dipole   ­ adds to attractive forces  example 1:  CH2Cl electronegative forces H=2.1 C=2.5 Cl=3 dipole­dipole?  if you draw the structure it has a tetrahedral shape and it is cis 2.0­0.​es 5 y Hydrogen Bonding​  ​stronger force)  ­electronegative OH NH H+  ­e­ pulled away and deshielded from + to ­  ­Increase in boiling point and melting point  ­account for 2 to 5% of covalent bonds  Attractive Forces and Solubility  ­Like dissolves like  Immiscible liquids  ­will see different layers  Ion Dipole attractio ​strongest force)  ­ions attracted to dipole of polar molecule   ­ion dipole attraction determines solubility  example 2: ​ H3OH  polar hydrogen bonding and CH3Cl are polar  Surface Tension  ­tendency to minimize surface area  ­layer on the surface behaves differently than the interior  ­can cause something denser than water to float  ­surface molecules are less stable  Factors Affecting Surface Tension  ­ High temperature and low ST, the stronger the intermolecular forces higher ST  Viscosity  ­larger intermolecular attractions higher volume  ­1 noise=1 P=1 g/cm*s ­> cP H2O= 1cP  ­ measuring viscosity: spindle, rotational, capillary  ­factors affecting V­> stronger intermolecular forces, more resistance, more spherical shaped  molecule lower V  ­ Higher temperature, lower viscosity  Capillary Action  ­ability of liquid to flow up within a tube against gravity  cohesive­hold liquid molecules together  adhesive­​ attract out liquid molecule to tube  ­narrower the tube the higher the liquid will travel  ­convex Hg (metallic bonding) cohesion is greater than adhesion  Meniscus concave down cohesion lower than adhesion  Distribution of KE  ­constantly in motion (solid, liquid or gas)  ­Kavg is proportional to T  ­some have more, some have less, some have average  3  Vaporization ​ ndothermic  ­ fast evaporation= volatile  ­ larger the surface area, the faster the rate of evaporation (becoming a gas increase in  vapor pressure  Condensation ​ exothermic  ­loosing E through collisions  ­gas becomes a liquid and forms droplets on objects  Heat of Vaporization   ­ ▯Hcondensation= ­▯Hvaporization  example 3: 1​55x 1 mol/40.7 kJx18.02g/1mol =​ 68.6 g H2O  90.0 gx1mol/60.09x39.9/1mol=​  59.8 kJ  Dynamic Equilibrium  ­ rate V=C, they will occur at the same rate  Vapor Pressure  ­pressure exerted by water, weaker attractive forces= more molecules, weaker attractive forces  greater vapor pressure, the greater the vapor pressure the more volatile the liquid  Dynamic Equilibrium  ­ greater the volume the smaller the vapor pressure, vapor amount increases until it  reaches a new equilibrium    Vapor Pressure vs Temperature  ­higher the temperature the greater number of molecules the greater the vapor pressure  Boiling  ­ Vapor pressure=external pressure  Heating Curve of a liquid  q=mC▯T   ­ on the curved portions of the graph use the above equation  ­ width of the flat portions of the graph is the magnitude of ▯H vaporization, the greater the  specific heat the greater the slope  ­ on the flat portions of the graph use the below equation  n▯Hvaporization  Clausius­Clapeyron Equations:  1. ln (Pvap)=(­▯vap/R)(1/T)+ln(ß)  2. ln (P2/P1)= (­▯Hvap/R)(1/T2­1/T1)  example 4: ​ln (p2/760)= ­.0352/8.314(1/(64.6+273)­1/12+273) =​ 75.4 torr  ln(P2/760)= ­0.0407/8.314(1/298­1/377)=2 ​8 torr  Supercritical Fluid  ­liquid is heated in a sealed container, vapor collects, pressure increases, density and volume  increases, density of the liquid decreases  ­the meniscus disappears and forms a supercritical fluid  ­properties of a gas and liquid  The Critical Point  ­ required to produce supercritical fluid at a supercritical temperature  ­ critical pressure= critical temperature  4  ­ increase in temperature, C temperature, gas cannot condense to a liquid no matter how  high the pressure  Sublimation and Deposition  ­ vibrate, surface may become a gas= sublimation  ­ deposition a gas become a solid   ­ both can exist equally at dynamic equilibrium, Temperature decreases melting point  ­ solids can have a vapor pressure   ­ solid to gas ▯H increases ▯S increases, gas to a solid ▯H decreases and ▯S decreases  Melting=Fusion  ­solid heats up until the molecules vibrate more  ­temperature reaches melting point, energy to overcome attractions to melt the solid  ­opposite is freezing  Heating Curve of a solid  ­linearity q=mC▯T  ­temperature @ melting point, heat melting the solid yields a constant temperature  ­solid to a liquid is an increase in temperature  ­ice/water temperature 0  at 1 atm  Energetics of Melting  ­ increase in energy lost, decrease in kinetic energy  ­ melting is endothermic ▯H>0, freezing ▯H<0  ­ Melting, energy needs to overcome attractions ▯S>0 because there is more disorder  Heat of Fusion  ­ always endothermic ▯H +  ­ temperature dependant ▯H crystal= ­ ▯H fusion  ­ less than ▯Hvap because a lot more intermolecular forces are required to break to  become a gas  ­ ▯Hsub=▯Hfus+▯Hvap  example 5:  segment 1 q=mC▯T 18(2.09)(25)= 0.941 kJ  segment 2:  n▯Hvap= 1(6.02)=6.02 kJ  segment 3 (same equation as 1)= 18(4.18)100=7.52  segment 4: (same equation as 2) 1(40.7)= 40.7  segment 5: (same as 1) 25(18)2.01=0.904 kJ  ­ add all of them together 5 ​6.1 kJ      5 


Buy Material

Are you sure you want to buy this material for

0 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Amaris Trozzo George Washington University

"I made $350 in just two days after posting my first study guide."

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.