New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

EXSC 322

by: Ticynn London

EXSC 322 EXSC 322

Ticynn London
GPA 3.4
View Full Document for 0 Karma

View Full Document


Unlock These Notes for FREE

Enter your email below and we will instantly email you these Notes for Anatomical Kinesiology

(Limited time offer)

Unlock Notes

Already have a StudySoup account? Login here

Unlock FREE Class Notes

Enter your email below to receive Anatomical Kinesiology notes

Everyone needs better class notes. Enter your email and we will send you notes for this class for free.

Unlock FREE notes

About this Document

The skeleton considerations notes
Anatomical Kinesiology
Phil Sabatini
Class Notes
exercise science




Popular in Anatomical Kinesiology

Popular in Physical Education

This 15 page Class Notes was uploaded by Ticynn London on Monday February 22, 2016. The Class Notes belongs to EXSC 322 at Old Dominion University taught by Phil Sabatini in Spring 2016. Since its upload, it has received 56 views. For similar materials see Anatomical Kinesiology in Physical Education at Old Dominion University.


Reviews for EXSC 322


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/22/16
Skeleton Consideration A bone is a dynamic living tissue that is continually being modeled and  remodeled by the forces acting on it. What are the functions of bone? 1. provides a system of levers that can be moved by forces from  muscles 2. provides a skeletal framework that supports and protects other  body tissue Consist of Bones, cartilage, ligaments, and joints It is 20% of total body weight It is influenced by nutrition, physical activity, and postural habits Function 1: Levers  A simple machine that magnifies the force and/or speed of movement  Skeletal system provides the levers and axes about which muscle generates  movement Function: Support Shape: Frame to keep body supported Movement: Transfers forces  Protection: Internal organs Bone Tissue Has 25–30% water (by weight) Has 60–70% minerals and collagen Viscoelastic: Both Viscous and Elastic Properties affected by deformation  rate. Composition of Bone Major building blocks of bone Calcium carbonate & calcium phosphate: provide stiffness and compressive  strength Collagen: provide flexibility and tensile strength Water: Important to bone strength. Transports nutrients and waste products Composition of Bone Tissue As much as a half a gram of calcium may enter or leave the adult skeleton  every day, and humans recycle 5­7% of their bone mass every week. Osteoclasts are the cells that break down bone and convert calcium salts into a soluble form that passes easily into the blood.   Osteoblasts produce the organic fibers on which the calcium salts are  deposited. Cortical Bone                                 Trabecular Bone Also known as “spongy” bone Also known as “compact” bone It has high porosity 30-90% non-mineralized tissue It has low porosity with 5-30% non-mineralized tissue that Short Bones:more straFlatLBongeBs:ones: can withstand greater stress before fracturing but less strain Cancellous (Trabecular) bone isdarlyiwororofns interior to cortical bone and isscuslar skeleton Cortical Bone – compact bone found in the ends of long has porosity less that 15%. absorbers Provideualyeiaerxtsmoities Small changes in porosity can bones with porosity gmuscle and ligament lead to significant changes in Usually articulatend attacLarensttsbones in body the stiffness and strength of stiff than cortical bone. with more than bone. one bone Has aEx:hudmenusthiaiius, shapuelna, femur, tibia, Ex: carpals and fibula, etc. tarsals Ex: ribs, ilium, sternum, Types of Bones Structure of Long Bones Epiphysis: Metaphysis: Diaphysis: head at each end area where fusion of shaft of the bone the head and shaft occur Made of compact Wider than shaft bone Wide part of shaft Epiphyseal plate- Function- gives where bone growth Made up of strength occurs trabecular bone Function- supports the epiphysis Types of Bone Sesamoid bones: Irregular Bones: Increase the angle of insertion of a Specialized functions muscle (i.e., increase the moment arm of a do not fit in any other muscle) category – Mixed shapes Protect tendon from excessive wear Modifying pressure Ex: skull, pelvis, and Reduce friction vertebrae Alter the direction of pull of a muscle Ex: patella, base of 1 metatarsal Bone Growth  Ossification:  Formation of bone by the activity of osteoblasts and osteoclasts and the  addition of minerals and salts Osteoblast:  Cells that form bone ­ increase bone mass Take minerals from the blood and deposit them in the bone Osteoclasts: Cells that eat away (reabsorb) old bone Decrease bone mass Longitudinal Growth: Growth ceases after the closure of the epiphyseal plates Epiphyseal plates expand, forming new cells, and increasing length of the  bond 18­25 years old Circumferential Growth: Osteoblast and osteoclast activity Continues throughout the lifespan  Most rapid growth occurring prior to adulthood Wolff’s Law Bone strength increases and decreases as the functional forces on the bone  increase and decrease bones adapt to loads loading ↑: bone will remodel to become stronger  loading ↓: resorption occurs and bone weakens osteoclasts break down bone and release the minerals, resulting in a transfer  of calcium from bone fluid to the blood. Osteoporosis Bone resorption exceeds bone deposits Decrease in bone mineral mass Loss of bone density  – Results in a loss of stiffness Loss of trabecular integrity – Results in a weakening of the bone Increased incidence of fracture Cause is multi­factorial – Hormonal factors – Nutritional imbalances – Lack of exercise Stress: force applied to deform a structure Stress = force/area Strain: deformation resulting from stress Strain = (change in length)/(resting length) Stress­Strain Curve  • Elastic modulus Stiffness of a material • Yield point – Up to yield point, structure is in its elastic region and will return with no damage – Past the yield point is the structure’s plastic region • Failure – If the applied force continues past the plastic region, the tissue  Elastic Viscoelastic will eventually  fail. Linear relationship exists Non-linear or viscous between stress and properties in Types of  strain combination with linear Materials elastic properties. When the applied force deforms the material, The combination of the amount of these properties results deformation is the same in the magnitude of the for a given amount of stress being dependent stress. on the RATE of loading. All biological materials such as tendon and Strength vs. Stiffness Strength Stiffness Strength is necessary for load Stiffness is the materials bearing, and lightness is necessary resistance to load as the to allow movement. structure deforms Failure point or load sustained Modulus of elasticity before failure Slope of the load Failure is caused by: deformation curve - Single traumatic event - Accumulation of microfractures Bone is flexible and weak Assessed by: - Energy storage - Area under stress-strain curve Types of Loads Compression forces – Press the “ends” of the bone together Tension forces – Pulls or stretches bone apart – Produced by pull of contracting muscle – Occurs most often at an apophasis bony outgrowth Torsional forces – Twisting force – Creates a shear stress over the entire structure Shear forces – Sliding or slipping force – Adjacent parts of bone would experience equal and opposite  forces. Influence of Bone 1. Magnitude 2. Frequency 3. Location 4. Variability 5. Direction 6. Rate of application 7. Duration Immovable Joints Synarthroses ­ Permit shock absorption but not movement ­ Sutures ­ bone sheets bound at first by fibers ­ fibers then ossify and are replaced by bone e.g. sutures of skull Syndesmoses ­ bones bound by dense fibrous tissue ­ extremely limited movement e.g. mid­radioulnar and mid­tibiofibular Slightly Movable Joints Amphiarthroses  ­Cartilaginous joint ­Reduces/spreads shock and allows minimal motion Synchondroses ­ joints held together by thin layer of hyaline cartilage e.g. sternocostal joints Symphyses ­thin plates of hyaline cartilage separated by a disc of fibrocartilage  from the bone e.g. vertebral joints, pubic symphysis Freely Movable Joints Diarthroses or synovial joints ­ Highly moveable   7 Types:  1. Gliding (Plane): non­axial gliding is permitted 2. Hinge: Allows movement in one plane (uniaxial) 3. Pivot: Allows movement in one plane (uniaxial) 4. Condyloid: Allows primary movement in one plane 5. Ellipsoid: Allows movement in two planes (biaxial) 6. Saddle: Found only at the carpometacarpal articulation of the thumb 7. Ball and Socket: Surfaces are reciprocally convex and concave Function of Ligaments 1. Increase joint stability 2. Connects bone to bone 3. Guide normal joint motion 4. Restrict abnormal joint movement Muscular Considerations for Movement Responsible for movement of body and all of its joints Muscle contraction produces force that causes joint movement Muscles also provide  – protection – posture and support  – produce a major portion of total body heat Characteristics of Muscle 1. Irritability (i.e. excitability) Ability to respond to stimulation  – stimulation provided by motor neuron releasing a  neurotransmitter. – 2  only to nervous tissue in regards to sensitivity 2. Contractibility Ability to generate tension and shorten – can shorten by 50 ­70% of resting length 3. Extensibility Ability to stretch beyond resting length – external force required 4. Elasticity Ability to return to resting length after stretch Individual Muscle Organization Fascia – Sheet of fibrous tissue – Connective tissue Epimysium – Covers outside of muscle – Continuous with tendon – Houses groups of Fascicles – Transfers the various tensions to the tendon, providing a  smooth application of the force to the bone. Fascicles – Bundles of muscle fibers – Covered by Perimysium Perimysium – Dense connective sheath – Covers fascicles – Protects fibers and provides pathways for nerves and blood  vessels – The focus of flexibility training because the connective tissue in muscle can be stretched allowing the muscle to elongate. Fibers – Contained in fascicles – Each fascicle can contain as many as 200 fibers – Skeletal muscle cells – Parallel to each other – Covered by endomysium Endomysium – Membrane that covers fibers – Carries capillaries and nerves Sarcolemma – Directly under endomysium • a thin plasma membrane surface that branches into the  muscle.   • The neurological innervation of the muscle travels  through the sarcolemma and eventually reaches each  individual contractile unit by means of chemical  neurotransmission. Myofibrils – Myosin & actin – Form sarcomere Muscle Fiber Types Type I Type IIa/IIx Slow Twitch Fast Twitch Highly Oxidative Minimally Oxidative Low force potential High Force potential Fatigue Resistance Easily Fatigued “Dark Meat” “White Meat” Stimulus  Subthreshold stimulus – not strong enough to cause an action potential – does not result in a contraction  Threshold stimulus – stimulus becomes strong enough to produce an action potential  in a single motor unit axon – all of the muscle fibers in the motor unit contract Submaximal stimuli – Stimuli that are strong enough to produce action potentials in  additional motor units Maximal stimuli – Stimuli that are strong enough to produce action potentials in  all motor units of a particular muscle Factors affecting muscle tension development • Latent period – Brief period of a few milliseconds following stimulus • Contraction phase – Muscle fiber begins shortening – Lasts about 40 milliseconds • Relaxation phase – Follows contraction phase – Last about 50 milliseconds • Summation – When successive stimuli are provided before relaxation phase  of first twitch has completed, subsequent twitches combine with the first to produce a sustained contraction  • Tetanus  – results if the stimuli are provided at a frequency high enough  that no relaxation can occur between contractions Fusiform (Parallel) Muscles • Fascicles run length of muscle • Large degree of shortening • High velocity movements • Muscle fiber generally longer than tendon Penniform Muscles • Fibers run diagonally with respect to tendon • Feather­like in appearance • Fiber force in different direction to muscle force • the fibers are shorter than the muscle and the change in the fiber  length is not equal to the change in muscle length. 3 types of penniform muscles 1. Unipennate 2. Bipennate 3. Multipennate Anatomical Cross­Sectional Area (ACSA)   Sum total of all the cross­sections of fibers in the muscle in the plane  perpendicular to the direction of the tendon Physiological cross­sectional area Sum total of all the cross­sections of fibers in the muscle in the plane  perpendicular to the direction of the fibers Muscle Attachment Muscle attaches to bone in 1 of 3 ways 1. Directly to bone: Fusion of epimysium to bone (trapezius) 2. Tendon: Tendon fused to muscle fascia (biceps brachii) 3. Aponeurosis: Sheath of connective tissue (abdominals) Roles of Muscle Stabilizers Act in one segment so that a specific movement in an adjacent segment can  occur aka Fixators Neutralizer Muscle that contracts to eliminate unwanted movement caused by another  muscle Synergist If more force is required these muscles assist the prime mover aka Assistant Movers Agonists Muscles primarily responsible for producing a given joint movement aka Prime Movers Antagonists Muscles who oppose the joint movement  Must relax to allow movement One and Two Joint Muscles Passive Insufficiency – Inability of two­joint muscle to be stretched sufficiently to  allow a complete ROM at all the joints it crosses because  antagonists cannot be further elongated Active Insufficiency – Inability of two­joint muscle to produce force when joint  position shortens the muscle to the point where it cannot  contract (Finger flexion with Wrist Flexion)


Buy Material

Are you sure you want to buy this material for

0 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Amaris Trozzo George Washington University

"I made $350 in just two days after posting my first study guide."

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.