New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Math 103, week 4-5 notes

by: Cambria Revsine

Math 103, week 4-5 notes MATH 103 001

Cambria Revsine

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These notes cover material from our fourth and fifth week of class, chapters 3.2-3.5 of Thomas' Calculus
Intermediate Algebra Part III
William Simmons
Class Notes
Math, Calculus
25 ?




Popular in Intermediate Algebra Part III

Popular in Mathematics (M)

This 4 page Class Notes was uploaded by Cambria Revsine on Monday February 22, 2016. The Class Notes belongs to MATH 103 001 at University of Pennsylvania taught by William Simmons in Spring 2016. Since its upload, it has received 16 views. For similar materials see Intermediate Algebra Part III in Mathematics (M) at University of Pennsylvania.

Similar to MATH 103 001 at Penn


Reviews for Math 103, week 4-5 notes


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/22/16
Math 103—Week 4­5 Notes—3.2­3.5 3.2: Derivatives: The derivative of a function f(x) at any point x: f (x)=lim f(x+h )− f (x) h→0 h ' f(z − f (x) f (x)=lz→ x z−x *z = x + h, or the second point Derivative notations: ' ' dy df d f (x =y = = = f(x =D (f)(x)=D fx(x)   dx dx dx One can graph a derivative by estimating the slope at several points on the function, plotting the  points as  (x , f(x))  on a second graph, and connecting the dots with a smooth curve Differentiable: when a function has a derivative at every point, or at a specific point  a function is differentiable on an open interval if it has a derivative at every point on the  interval  a function is differentiable on a closed interval [a,b] if it has a derivative on the interior (a,b)  and a right­hand derivative at a and left­hand derivative at b Where is a function not differentiable at a point? *Whenever the right and left­hand derivatives are not equal  1. A corner (like  f x = |x|  at x=0) ¿ x∨¿ 2. A cusp (like  f x )= ¿  at x=0) 3. A vertical tangent (where the slope is vertical; undefined) 4. A discontinuity (where there is a jump or point missing) 1 5. Rapid oscillation of the slope (like at  f(x)=sin? (x)  at x=0) **If f is differentiable at a point, it is continuous at the point  the converse is not necessarily true 3.3: Differentiation Rules: Derivative of a Constant Function: d If  f x =c  then  dx(c)=0 Power Rule: d (xn=nx n−1 dx Derivative Constant Multiple Rule: If  u  is a differentiable function ox   and  c  is a constant, then d (cu)=c du dx dx d du   dx cu =c dx Sum Rule: If  u  and  v  are differentiable functions ofx  then their sum u+v  is differentiable,  d du dv and  (u+v = + dx dx dx Ex: Find the points where the curve  y=x −2x +22  has horizontal tangents. Horizontal tangents occur where the slope of an equation equals 0: d ( x −2x +2¿=4x −4x 3 dx 4 x −4x=0 2 4 x(x −1 )=0 x=0,1,−1 Plug the x­values back in to original equation: 0,2 ,(1,1),(−1,1) Derivative of  e : d x x dx (e =e Product Rule: If  u  and  v  are differentiable atx  then their product uv  is differentiable, and d dv du uv =u +v dx dx dx “First times derivative of the second plus second times derivative of the first” Quotient Rule: u If  u  and  v  are differentiable atx  and if v(x)≠0 , then the quotient   is  v differentiable, and du dv d u v dx −u dx = 2 dx v) v “Bottom times derivative of the top minus top times derivative of the bottom all over bottom  squared” Second derivative: derivative of the first derivative  Second derivative notations: 2 f'(x = d y = d dy = dy' =y =D' 2(f)x =D f (x) d x2 dx dx dx x th  **You can keep taking the derivative any subsequent number of times, to the n derivative 3.4: Rates of Change: Instantaneous rate of change of f with respect to x a0 x  equals the derivativ0 of x . ' f(x0+h ) f (x0) f ( 0lim h→0 h *Instantaneous rates are limits of average rates ** “rate of change” usually means “instantaneous rate of change” Position:  s= f (t) Velocity: derivative of position with respect to time t ds f(t+∆t )− f (t) v(t= = lim dt ∆t →0 ∆t *Positive velocity means it is moving forward, negative velocity means it is moving backward Speed: absolute value of velocity | | =¿ ds∨¿ dt Acceleration: derivate of velocity with respect to time: If a object’s position at time t is s=f(t)  then its acceleration at time t is dv d s a(t= = 2 dt dt *rate of change of an object’s velocity (how quickly an object increases or decreases speed) Jerk: derivative of acceleration with respect to time da d s j(t)= = 3 dt dt *sudden change in acceleration Derivatives in Economics: Marginal cost of production: derivative of cost of production with respect to x (the number of  units produced)  AKA average cost of each additional unit produced  dc dx Sensitive: a term for when a small change in x produces a large change in f(x)  When x is small, its change produces a larger change in y  In the derivative graph, a higher value means it is more sensitive at that point 3.5: Trig Derivatives: Derivative of sin x: cos x Derivative of cos x: ­sin x 2  Derivative of tan x: sec x Derivative of csc x: ­csc x cot x  Derivative of sec x: sec x tan x  Derivative of cot x: ­csc  x


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Amaris Trozzo George Washington University

"I made $350 in just two days after posting my first study guide."

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.