New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Kin 290, Chapter 3, Week 3

by: Leonard Carey

Kin 290, Chapter 3, Week 3 Kin 290

Leonard Carey


Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

Chapter 3 Notes outline format
Anatomy & Physiology
Dr. Satern
Class Notes
Anatomy kinesiology Kin 290
25 ?




Popular in Anatomy & Physiology

Popular in Kinesiology

This 7 page Class Notes was uploaded by Leonard Carey on Monday April 11, 2016. The Class Notes belongs to Kin 290 at 1 MDSS-SGSLM-Langley AFB Advanced Education in General Dentistry 12 Months taught by Dr. Satern in Spring 2016. Since its upload, it has received 9 views. For similar materials see Anatomy & Physiology in Kinesiology at 1 MDSS-SGSLM-Langley AFB Advanced Education in General Dentistry 12 Months.


Reviews for Kin 290, Chapter 3, Week 3


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 04/11/16
Chapter 3 ActiChapter 3 Cells: The Living Units Why This Matters  Understanding the structure of the body’s cells explains why the permeability of the  plasma membrane can affect treatment 3.1  Cells: The Living Units  Cell theory – A cell is the structural and functional unit of life  – How well the entire organism functions depends on individual and combined  activities of all of its cells – Structure and function are complementary  Biochemical functions of cells are dictated by shape of cell and specific  subcellular structures – Continuity of life has cellular basis  Cells can arise only from other preexisting cells 3.1  Cells: The Living Units (Figure 3.1 – p. 61)  Cell diversity – Over 200 different types of human cells – Types differ in size, shape, and subcellular components; these differences lead  to differences in functions 3.1  Cells: The Living Units (Figure 3.2 – p. 62)  Generalized Cell  – All cells have some common structures and functions – Human cells have three basic parts: 1.  Plasma membrane: flexible outer boundary  2.  Cytoplasm: intracellular fluid containing organelles 3.  Nucleus: DNA containing control center Part 1 ­ Plasma Membrane  Acts as an active barrier separating intracellular fluid (ICF) from extracellular fluid (ECF)  Plays dynamic role in cellular activity by controlling what enters and what leaves cell  Also known as the “cell membrane” 3.2  Structure of Plasma Membrane (Figure 3.3 – p. 64)  Consists of membrane lipids that form a flexible lipid bilayer  Specialized membrane proteins float through this fluid membrane, resulting in  constantly changing patterns © 2016 Pearson Education, Inc. 1 Chapter 3 – Referred to as fluid mosaic (made up of many pieces) pattern  Surface sugars form glycocalyx  Membrane structures help to hold cells together through cell junctions Membrane Lipids  Lipid bilayer is made up of: – 75% phospholipids, which consist of two parts:  Phosphate heads: are polar (charged), so are hydrophilic (water­loving)  Fatty acid tails: are nonpolar (no charge), so are hydrophobic (water­hating) – 5% glycolipids  Lipids with sugar groups on outer membrane surface – 20% cholesterol  Increases membrane stability Membrane Proteins  Allow cell communication with environment  Make up half the mass of plasma membrane   Most have specialized membrane functions  Some float freely, and some are tethered to intracellular structures  Two types: – Integral proteins; peripheral proteins Membrane Proteins (cont.) (Figure 3.4a,c,e,f – p. 66)  Integral proteins – Firmly inserted into membrane – Most are transmembrane proteins (span membrane) – Have both hydrophobic and hydrophilic regions  Hydrophobic areas interact with lipid tails  Hydrophilic areas interact with water – Function as transport proteins (channels and carriers), enzymes, or receptors Cell Junctions  Some cells are “free” (not bound to any other cells) – Examples: blood cells, sperm cells  Most cells are bound together to form tissues and organs  Three ways cells can be bound to each other – Tight junctions  – Desmosomes  – Gap junctions  How do substances move across the plasma membrane?  Plasma membranes are selectively permeable © 2016 Pearson Education, Inc. 2 Chapter 3 – Some molecules pass through easily; some do not  Two ways substances cross membrane – Passive processes: no energy required – Active processes: energy (ATP) required 3.3  Passive Membrane Transport  Passive transport requires no energy  Two types of passive transport – Diffusion  Simple diffusion  Carrier­ and channel­mediated facilitated diffusion  Osmosis – Filtration  Type of transport that usually occurs across capillary walls Diffusion (Figure 3.6 – p. 68)  Collisions between molecules in areas of high concentration cause them to be  scattered into areas with less concentration – Difference is called concentration gradient – Diffusion is movement of molecules down their concentration gradients (from  high to low)  Energy is not required  Speed of diffusion is influenced by size of molecule and temperature Diffusion (cont.)  Molecules have natural drive to diffuse down concentration gradients that exist  between extracellular and intracellular areas  Plasma membranes stop diffusion and create concentration gradients by acting as  selectively permeable barriers Diffusion (cont.)  Nonpolar, hydrophobic lipid core of plasma membrane blocks diffusion of most  molecules  Molecules that are able to passively diffuse through membrane include: – Lipid­soluble and nonpolar substances – Very small molecules that can pass through membrane or membrane channels – Larger molecules assisted by carrier molecules Diffusion (cont.)  Simple diffusion (Figure 3.7a – p. 69) – Nonpolar lipid­soluble (hydrophobic) substances diffuse directly through  phospholipid bilayer © 2016 Pearson Education, Inc. 3 Chapter 3 – Examples: oxygen, carbon dioxide, fat­soluble vitamins Diffusion (cont.)  Facilitated diffusion – Certain hydrophobic molecules (e.g., glucose, amino acids, and ions) are  transported passively down their concentration gradient by:  Carrier­mediated facilitated diffusion – Substances bind to protein carriers  Channel­mediated facilitated diffusion – Substances move through water­filled channels Diffusion (cont.) (Figure 3.7b – p. 69)  Carrier­mediated facilitated diffusion – Carriers are transmembrane integral proteins – Carriers transport specific polar molecules, such as sugars and amino acids, that are too large for membrane channels  Example of specificity: glucose carriers will carry only glucose molecules,  nothing else – Binding of molecule causes carrier to change shape, moving molecule in process – Binding is limited by number of carriers present  Carriers are saturated when all are bound to molecules and are busy  transporting Diffusion (cont.) (Figure 3.7c – p. 69)  Channel­mediated facilitated diffusion – Channels with aqueous­filled cores are formed by transmembrane proteins – Channels transport molecules such as ions or water (osmosis) down their  concentration gradient   Specificity based on pore size and/or charge  Water channels are called aquaporins – Two types:  Leakage channels – Always open  Gated channels – Controlled by chemical or electrical signals Diffusion (cont.) (Figure 3.7d – p. 69)  Osmosis – Movement of solvent, such as water, across a selectively permeable membrane  – Water diffuses through plasma membranes  Through lipid bilayer (even though water is polar, it is so small that some  molecules can sneak past nonpolar phospholipid tails) © 2016 Pearson Education, Inc. 4 Chapter 3  Through specific water channels called aquaporins (AQPs) – Flow occurs when water (or other solvent) concentration is different on the two  sides of a membrane  Diffusion (cont.)  A living cell has limits to how much water can enter it  Water can also leave a cell, causing cell to shrink  Change in cell volume can disrupt cell function, especially in neurons Table 3.1 – p. 73 3.4  Active Membrane Transport  Two major active membrane transport processes – Active transport – Vesicular transport  Both require ATP to move solutes across a plasma membrane for any of these  reasons: – Solute is too large for channels, or – Solute is not lipid soluble, or – Solute is not able to move down concentration gradient Active Transport  Requires carrier proteins (solute pumps) – Bind specifically and reversibly with substance being moved  Moves solutes against their concentration gradient (from low to high) – This requires energy (ATP) Active Transport (cont.)  Two types of active transport: – Primary active transport  Required energy comes directly from ATP hydrolysis – Secondary active transport  Required energy is obtained indirectly from ionic gradients created by primary active transport Active Transport (cont.)  Primary active transport – Energy from hydrolysis of ATP causes change in shape of transport protein – Shape change causes solutes (ions) bound to protein to be pumped across  membrane + + – Example of pumps: calcium, hydrogen (proton), Na ­K  pumps © 2016 Pearson Education, Inc. 5 Chapter 3 Active Transport (cont.) (Table 3.2 top – p. 79)  Sodium­potassium pump – Most studied pump – Basically is an enzyme, called Na ­K  ATPase, that pumps Na  out of cell and K   + back into cell – Located in all plasma membranes, but especially active in excitable cells (nerves  and muscles) Active Transport (cont.) (Focus Figure 3.1 – p. 74) +  Leakage channels located in membranes result in leaking of Na  into the cell and  leaking of K  out of cell  – Both travel down their concentration gradients + + + +  Na ­K  pump works as an antiporter that pumps Na  out of cell and K  back into cell  against their concentration gradients  Maintains electrochemical gradients, which involve both concentration and electrical  charge of ions – Essential for functions of muscle and nerve tissues 3.5  Membrane Potential Resting membrane potential (RMP) – Electrical potential energy produced by separation of oppositely charged particles across plasma membrane in all cells  Difference in electrical charge between two points is referred to as voltage  Cells that have a charge are said to be polarized – Voltage occurs only at membrane surface  Rest of cell and extracellular fluid are neutral  Membrane voltages range from –50 to –100 mV in different cells (negative  sign (–) indicates inside of cell is more negative relative to outside of cell) K  is Key Player in RMP + + K  diffuses out of cell through K  leakage channels down its concentration gradient Negatively charged proteins cannot leave – As a result cytoplasmic side of cell membrane becomes more negative + K  is then pulled back by the more negative interior because of its electrical gradient When drive for K  to leave cell is balanced by its drive to stay, RMP is established – Most cells have an RMP around –90 mV  Electrochemical gradient of K  sets RMP + K  is Key Player in RMP (cont.) (Figure 3.14 – p. 80) In many cells, Na  also affects RMP – Na+ is also attracted to inside of cell because of negative charge © 2016 Pearson Education, Inc. 6 Chapter 3 +  If Na  enters cell, it can bring RMP up to –70 mV – Membrane is more permeable to K  than Na , so K  primary influence on RMP – Cl  does not influence RMP because its concentration and electrical gradients are  exactly balanced Active Transport Maintains Electrochemical Gradients RMP is maintained through action of the Na ­K  pump, which continuously ejects 3Na   + + out of cell and brings 2K  back inside Steady state is maintained because rate of active pumping of Na  out of cell equals the  + rate of Na  diffusion into cell Neuron and muscle cells “upset” this steady state RMP by intentionally opening gated  + + Na  and K  channels © 2016 Pearson Education, Inc. 7


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Jennifer McGill UCSF Med School

"Selling my MCAT study guides and notes has been a great source of side revenue while I'm in school. Some months I'm making over $500! Plus, it makes me happy knowing that I'm helping future med students with their MCAT."

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.