×

Let's log you in.

or

Don't have a StudySoup account? Create one here!

×

or

by: Zachary Hill

14

1

4

Calculus II Notes Week 14 MATH 1220

Marketplace > Tulane University > Mathematics (M) > MATH 1220 > Calculus II Notes Week 14
Zachary Hill
Tulane
GPA 3.88

Get a free preview of these Notes, just enter your email below.

×
Unlock Preview

These notes cover some review for Taylor series and the ratio test.
COURSE
Calculus II
PROF.
Benjamin Klaff
TYPE
Class Notes
PAGES
4
WORDS
CONCEPTS
Math, MATH1220, Calculus, calculusii, Klaff
KARMA
25 ?

Popular in Mathematics (M)

This 4 page Class Notes was uploaded by Zachary Hill on Sunday April 24, 2016. The Class Notes belongs to MATH 1220 at Tulane University taught by Benjamin Klaff in Spring 2016. Since its upload, it has received 14 views. For similar materials see Calculus II in Mathematics (M) at Tulane University.

×

Reviews for Calculus II Notes Week 14

×

×

What is Karma?

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 04/24/16
MATH 1220 Notes for Week #14  18 April 2016  ● Find lim sin(x.  x→0 tan(x) ○ lim sin(x= lim ssin(x)lim sin(x)cos(= limcos(x) = 1  x→0 tan(x) x→0 cos(x) x→0 sin(x) x→0 ○ Recognize that the limit of the ratios of these functions near x = 0  is 1 because  that exhibit the same characteristics (slope of 1 in this case) near x = 0 .  ● Find the 3rd degree Taylor polynomial to f(x) = tan(x) near x = 0  ○   (0) f (0) = tan(0) = 0  y 0 0  (1) cos (0)+sin (0) 1 f (0) = (tan(0)) ′ = cos (0) = cos (0)=  y 1 x 1!x  2              sec (0) = 1  (2) 2 0 2 f (0) = (sec (0)) ′= 2sec(0)(sec(0)) ′=  y 2 x + x 2!x              2sec(0)((−2in(0) =  sin(0)0)             2sec(0)cos(0)(cos(0) =              2sec(0)tan(0)sec(0) =               2(1)(0)(1) = 0  f (0) = (2sec (0)tan(0)) ′=  y 3 x + x = x + x   1 3 2 3! 3              (2sec (0′tan(0) +               2sec (0)(tan(0′=               2(2sec(0))(sec(0)′tan(0) +               2sec (0)sec (0) =               4sec(0)tan(0)sec(0)tan(0) +  4 2 2              2sec (0) = 4sec (0)tan (0) +                2sec (0) = 4(1)(0) + 2(1) = 2  ● Exercise assigned for outside practice   1 ○ Find the first four nonzero terms of f(x) = 1+x2 near x = 0 by  (n) ■ Computing f (0). . .  ■ Manipulating the geometric series. . .    ○ Find the first four nonzero terms of f(x) = arctan(x)  near x = 0 by  (n) ■ Computing f (0). . .  ■ Manipulating the geometric series. . .          19 April 2016  Explored various number systems that will not be covered on the exam. This included modular  systems and the complex numbers.        20 April 2016  ● Find the first four nonzero terms of the Taylor series for e  centered at (or near) x = 1 .  2 3 f0(1) f1(1) f(2(1) 2 f3(1) 3 ○ T 3x) = c +0c (x1− 1) + c (x 2 1) + c (x − 3) = 0! + 1! (x − 1) + 2! (x − 1) + 3! (x − 1) = e + e(x − 1) + (x − 1) + (x − 1)   3 2! 3! ● Watched  ○ Khan Academy “Taylor Series”  ○ Khan Academy “Central Limit Theorem”  ○ Ben Lambert Central Limit Theorem Proof Part 1 on Youtube        22 April 2016  We practiced recalling the ratio test and the comparison test, and we came up with some series  for which the ratio test shows convergence and some for which it does not.  ● Series that converge according to the ratio test  ∞ xn ○ ∑ n!  n=0 ∞ n ○ ∑ (−1)   n=0 2n ● Series that don’t converge according to the ratio test  ∞ ○ ∑ nn  n=0x ∞ 2n ○ ∑ (−1) n n=0

×

25 Karma

×

×

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Kyle Maynard Purdue

"When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the material...plus I made \$280 on my first study guide!"

Jim McGreen Ohio University

Forbes

"Their 'Elite Notetakers' are making over \$1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!
×

Refund Policy

STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com