New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Chapter 6 and 7 Lecture Notes

by: Hannah Kennedy

Chapter 6 and 7 Lecture Notes 10120

Marketplace > Kent State University > Biological Sciences > 10120 > Chapter 6 and 7 Lecture Notes
Hannah Kennedy
GPA 3.98

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These notes cover everything covered in class in chapter 6 and chapter 7 regarding energy, glycolysis, the krebs cycle, biochemical pathways, activators, inhibitors, redox reactions, enzymes, ATP, ...
Biological Foundations Honors
Professor Grampa
Class Notes
Biology, Biology Foundations, glycolysis, krebs cycle, Energy, redox, oxidation, reduction, ATP, Enzymes
25 ?




Popular in Biological Foundations Honors

Popular in Biological Sciences

This 8 page Class Notes was uploaded by Hannah Kennedy on Saturday February 27, 2016. The Class Notes belongs to 10120 at Kent State University taught by Professor Grampa in Spring 2016. Since its upload, it has received 68 views. For similar materials see Biological Foundations Honors in Biological Sciences at Kent State University.


Reviews for Chapter 6 and 7 Lecture Notes


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 02/27/16
Copyright ©: Hannah Kennedy, Kent State University 1 Chapter 7 Lecture Notes 1. Energy sources  a. Autotroph = an organism able to build all the complex organic molecules that it requires  as its own food source, using only simple inorganic compounds i. Ex = plants, algae, and bacteria b. Heterotroph = an organism that can’t derive energy from photosynthesis or inorganic  chemicals so it must feed on other plants and animals and obtain chemical energy by  degrading their organic molecules i. Ex = humans 1. We take in glucose and make ATP 2. Harvesting Energy a. Overall balanced redox reaction for the harvesting of energy i. C 6 O12+66O    2             6C2  + 6H2O + ATP 1. Start with 1 molecule of glucose, 6 molecules of oxygen, ending with 6  molecules of carbon dioxide, 6 molecules of water, and ATP b. 2 reactions that harvest energy i. Glycolysis = process that occurs in the cytoplasm and that converts glucose into 3­ carbon molecules of pyruvate; as glucose is oxidized (losing electrons) to carbon  dioxide, cells transfer electrons temporarily to electron carriers and eventually to  oxygen (aerobic respiration) 1. For each molecule of glucose the cell makes 2 ATP 2. Purpose: to make energy (ATP) ii. Krebs cycle = series of 9 reactions that occur in the mitochondrial matrix that take  in acetyl­CoA and oxidizes it to transfer electrons and protons to NADH and FADH , 2 thus driving proton pumps that generate ATP c. 2 important electron carriers + i. NAD   ii. FAD 1. These are “temporary electron shuttles that hold onto electrons and then  used them to make ATP 3. Cellular Oxidation a. The foods that we consume and digest as broken bonds occurs through a series of oxidation  reacti+ns b. NAD  = nicotinamide adenosine dinucleotide = common cofactor used for redox  reactions  i. 2 forms 1. Oxidized form: NAD  (lost electrons) 2. Reduced form: NADH (gained electrons) a. NAD  will receive 2 electrons and 1 proton to become NADH and  during this transfer some energy is captured to form ATP and some is  lost as heat ii. When electrons are transferred, protons are transferred to maintain balance 1. H  = proton; because it is positive it contains no electrons and only 1 protons  remains 4. Glycolysis = the anaerobic breakdown of glucose (happens in cytoplasm) a. Net yield is 2 molecules of pyruvate and 2 molecules of ATP b. Net reaction of glycolysis: Copyright ©: Hannah Kennedy, Kent State University 2 i. C H O + 2ADP + 2P + 2NAD                  2pyruvate + 2ATP + 2NADH + 2H  +2H O + 6 12 6  i 2 Stage of glycolysis What is happening End result of glycolysis stage Priming reactions =  ­ 5 reactions total ­ glucose is made into  rearrangement of glucose and  ­ uses 2 molecules of ATP glyceraldehyde 3­phosphate aka  addition of 2 phosphates that  G3P prepares glucose to be cleaved + Cleavage = G3P is split into 2  ­ NAD  receives 2 electrons  ­ phosphate is added to G3P and  molecules of 1,3­ and 1 protons while G3P is  biphosphoglycerate is made  biphosphoglycerate (BPG) oxidized (BPG) Oxidation and ATP formation =  ­ 4 reactions ­ BPG is converted into pyruvate the phosphates can be added to  ADP to form ATP 5. Recycling of NADH a. Cells don’t have a high concentration of NAD  (used to deliver electrons to the electron  transport chain) so NADH needs to be converted back to it to continue glycolysis (happens 2 ways) i. Aerobic respiration = process in which the final electron acceptor is oxygen;  occurs in the mitochondria of eukaryotic cells when oxygen is present ii. Fermentation = process in which oxygen is unavailable so organic molecules accept the electrons instead b. At the end of glycolysis, pyruvate is oxidized to acetyl CoA via the Krebs cycle 6. Oxidation of pyruvate a. Energy is extracted from pyruvate in the mitochondria (involves a multi­enzyme complex) i. Pyruvate is decarboxylated and a carboxyl group is cleaved to CO 2  ii. The remaining acetyl group is attached to co­enzyme A to form acetyl­CoA iii. NAD  is reduced to NADH iv. Acetyl­CoA now enters Krebs cycle b. Overall reaction of oxidation of pyruvate: +  +  i. Pyruvate + NAD + CoA                 acetyl­CoA + NADH + CO  + H 2 7. Krebs cycle = 9 steps which use acetyl­CoA to produce ATP a. NAD is reduced to NADH b. FAD is reduced to FADH 2 i. FAD = Flavin adenine dinucleotide c. What goes in: 1 acetyl­CoA d. What comes out: 2 CO  and21 ATP 8. Electron transport chain = component the consists of a series of transmembrane proteins in the inner mitochondrial membrane that uses the electrons gained by NAD and FAD in glycolysis and  the Krebs cycle to pump electrons from the mitochondrial matrix into the intermembrane space a. Each transmembrane protein acts as a proton pump to pump hydrogen ions into the  intermembrane space of the mitochondrion b. Energy to pump protons against their gradient comes from the electrons i. Electrons gradually lose energy as this occurs c. Each electron carrier is only able to interact with adjacent carriers  d. ATP synthase carries electrons from the intermembrane space back to the matrix  Copyright ©: Hannah Kennedy, Kent State University 3 Electron transport chain Description Intermediate/proton pump component st NADH dehydrogenase complex ­ 1  protein of the chain Proton pump ­ accepts H and 2 electrons from NADH Ubiquinone ­ within the membrane Intermediate ­ transfers electrons from the  NADH dehydrogenase complex  nd to the 2  protein (cytochrome  bc1 complex) ­ oxidized FADH  2o FAD Cytochrome bc  c1mplex ­ 2  protein of the chain Proton pump ­ accepts electrons from  ubiquinone ­ passes the accepted electrons  to cytochrome c Cytochrome c ­ within the plasma membrane Intermediate ­ transfers electrons to the 3   complex (cytochrome oxidase  complex) Cytochrome oxidase complex ­ accepts 1 electron at a time  Proton pump from cytochrome c ­ passes electrons 4 at a time to  oxygen e. Chemiosmosis = a process facilitated by ATP synthase in which the protons that were  pumped into the intermembrane space flow back across the inner mitochondrial membrane i. pass through channels that couple their passage with ATP synthesis ii. ATP synthase = used to generate ATP (made of 2 portions); makes 100 ATP per  molecule per second 1. F  0omplex = component that is embedded within the inner mitochondrial  membrane and acts like a rotor; contains a proton channel a. As protons move through this it rotates i. Proton movement: protons move from the intermembrane space into the matrix 2. F  complex = component that is attached to the F  complex by a stale and  1 0 that has enzymatic activity  a. the stalk rotate as the F  complex rotates which changes the  0 conformation of the catalytic head of the F c1 plex iii. once 3 protons move through the channel, 1 ATP is made 9. Yield of Aerobic Respiration a. Glycolysis = 2 ATP b. Krebs cycle = 2 ATP c. Oxidative phosphorylation = 2 ATP d. Total = 36 ATP per glucose molecule Copyright ©: Hannah Kennedy, Kent State University 1 Chapter 6 1. Energy = the capacity to do work, 2 types a. Potential energy = the stored energy an object can use to do work b. Kinetic energy = energy of motion; energy currently being used by an object c. Energy can be found in different forms such as heat, sound, light, and  electricity i. Biological energy is obtained from the sun which autotrophs use for  photosynthesis d. Breaking bonds (i.e. C—H bonds) requires a lot of energy i. Ex = storing fatty acids in our fat reserves and using them when  energy is limited because we get energy from their broken C—H bonds e. Redox reactions = oxidation­reaction reactions = when bonds are  broken or formed; when electrons are transferred from one atom to another i. Oxidation = when an atom loses an electron ii. Reduction = when an atom gains an electron 1. Oxidation and reduction always occur together a. Mnemonic: OIL RIG When a reaction is When a reaction is a  an oxidation (O in is a reduction (R in rig) oil) electrons are electrons are gained overall lost overall 2. Thermodynamics a. First law of thermodynamics = states that energy can’t be created or  destroyed; that energy can only change from one form to another i. ex: phase changes, rearranging bonds (ATP) b. second law of thermodynamics = states that the disorder in the universe  = entropy and it is continuously increasing i. the less organized energy is the more stable (i.e. its easier for bricks to collapse then it is for them to stay upright and stacked) 3. Chemical Reactions a. Free energy = G = energy available to do work in any stem i. Can be positive or negative b. Endergonic reactions = (“enter”gonic) = reactions that require an input  of energy; positive     G i. This is not a spontaneous reaction because energy needs to effortfully  put in ii. Occurs when it is beneficial 1. Ex = when a cell puts in ATP for active transport for the  movement of molecules (i.e. there is a good end pay off to  putting in the energy and the effort) Copyright ©: Hannah Kennedy, Kent State University 2 c. Exergonic reactions = “exit” gonic) = reactions that release excess free  energy as heat; negative     G i. This is spontaneous reaction because energy is easily liberated ii. Ex = breaking of phosphate bonds in ATP 4.  ATP = adenosine triphosphate; energy currency of the cell; used for endergonic  reactions a. Adenosine = adenine and ribose b. Naming system: i. Adenosine + 1 phosphate = adenosine monophosphate (AMP) ii. Adenosine + 2 phosphate = adenosine diphosphate (ADP) iii. Adenosine + 3 phosphate = adenosine triphosphate (ATP) c. The phosphate bonds are high energy covalent bonds that are very easily  broken i. Within these bonds there are a lot of strain and tension due to the  negative charges on phosphate being so close to each other 1. This strain makes them easily breakable ii. When broken energy is released and used to power other things in the  cell (i.e. muscle contraction, sodium­potassium pump) d. ATP is easily replenishable and therefore cells don’t have a lot of ATP build­ up; they break the bonds, use the energy, and replace it. 5. Activation energy = the amount of energy needed to initiate a chemical reaction;  can be minimized by a catalyst; known as “the hurdle the reaction needs to  overcome” a. The lower the activation energy, the more stable the reaction b. Catalysts decrease the activation energy by stressing existing bonds (i.e.  rearranging them) and making them easier to break; the reaction is more  likely to occur because of this c. Transition state = the more stable phase in the reaction; the stage in  between the making and breaking of bonds  6. Enzymes = biological catalysts (usually proteins) that increase the rate of a reaction by decreasing activation energy; they are not changed or consumed a. Each enzyme catalyzes only 1 or a few reaction i. Advantage: gives the cell tight and specific control over what it is  doing at any particular time ii. Why we don’t want a multipurpose enzyme: the cell has no backup  plan and no control over what the enzyme is doing b. The location of the enzyme (i.e. the cytoplasm, plasma membrane, and  organelles) is determines by what the mission is of that enzyme i. Ex:  Location Function/Mission Organelles: lysosomes and peroxisomes When enzymes are found here they are in a  protected by a phospholipid bilayer in the  lysosome or peroxisome to help break  Copyright ©: Hannah Kennedy, Kent State University 3 harmful things down Plasma membrane Enzymes here are involved as  transmembrane proteins Cytoplasm Enzymes here catalyze reactions with polar  molecules and make sure reactants and  products don’t enter the cell; they are also  involved in facilitated diffusion here by  helping nonpolar substances through the  bilayer; ex = brush border enzymes c. Substrates = starting materials d. Products = substances formed during the reactions e. Active site = the specific part of the enzyme where the substrate(s) will bind and the reaction will take place i. The bond is temporary and forms an enzyme­substrate complex ii. Enzymes can change the shape of the active site while the substrates  are bound and conform the sit to fit the shape of the substrates 1. At this point the substrates are in close range to the enzyme  and the enzyme can stress bonds, allowing the reaction to take  place more quickly f. Multi­enzyme complexes = complexes that occur when several enzymes  are bound to each other to form a larger molecule and each enzyme catalyzes  sequential reactions of a pathway; “relay race” g. 2 things that allow reactions to happen easier i. When the shape of the substrate is more similar to the active site the  more likely the reaction will be to occur; “lock and key theory” ii. The affinity the substrate has for the active site (if the substrate is  negative then the active site should be positive) 1. The higher the affinity the tighter the bonding strength  between the substrate and the active site 7. Factors affecting enzymes Factor name Effect on enzyme Additional info Temperature The higher the  ­ Optimum temp = the  temperature the faster the  temperature at which our  rate of the reaction until  enzymes function the best;  optimum temperature is  anything higher than this  reached; molecules move  can cause them to lose  more with heat and the  function and denature (i.e.  motion from this stresses  a fever); 98.6°F bonds pH Enzymes have an optimum Exceptions to the 6­8 rule:  pH (6­8) at which they can  pepsin (stomach enzyme  function because enzymes  that prefers its optimum  are sensitive to the  pH at 2.5) and trypsin  Copyright ©: Hannah Kennedy, Kent State University 4 concentration of hydrogen  (enzyme that helps digest  ions proteins that prefers a  basic pH) Inhibitors = binds to and  ­ works to prevent the  In noncompetitive  deactivates an enzyme “turns  making of too much of  inhibition the substrate no  something longer fits into the  it off”; can do this in 2 ways 1. Competitive  ­ prevents the enzyme from allosteric site; this is made  inhibition =  functioning possible by tertiary and  inhibitions in which  quaternary protein  the inhibitor and the  structure shifting so that  enzymes cant fit substrate bind for the  same active site;  reversible 2. Noncompetitive  inhibition =  inhibition in which  inhibitor binds to a  different site than the  substrate = allosteric site and changes the  shape of the active site Activators = binds to and  Allows the enzyme to  Binding of a molecule to  activates an enzyme “turns it  function the allosteric site can also  on”; 2 kinds activate an enzyme 1. Cofactors =  additional chemicals  that are required for a  reaction to occur;  assist the enzyme in  speeding up the  reaction by  manipulating  electrons and  attracting them away  from covalent bonds to weaken them (ex = Zn  and Mn); obtained in  diet 2. Coenzymes = type of  cofactor that are non­ protein organic  (containing­carbon)  Copyright ©: Hannah Kennedy, Kent State University 5 molecules (ex =  vitamins and modified  nucleotides) 8. Metabolism = the sum of all chemical reactions occurring in the organism;  metabolism = anabolism + catabolism a. Anabolism = chemical reactions that use energy to synthesize molecules;  bonds are formed (dehydration synthesis) b. Catabolism = chemical reaction that break down molecules and release  energy; bonds are broken (hydrolysis) 9. Biochemical pathways = series of reactions taking place in sequence; “relay race” a. Each step of a biochemical pathway requires a unique enzyme and typically  happen in one area of the cell b. Negative feedback inhibition = regulation of a biochemical pathway by  controlling the activity of the first step of the pathways i. This is possible because the end product becomes the allosteric  inhibitor of the first enzyme


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Janice Dongeun University of Washington

"I used the money I made selling my notes & study guides to pay for spring break in Olympia, Washington...which was Sweet!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.