New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Integrals with partial fractions

by: Alejandra D. Rocha

Integrals with partial fractions 2314

Marketplace > University of Texas at El Paso > Math > 2314 > Integrals with partial fractions
Alejandra D. Rocha
GPA 3.1

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

In this section we are going to take a look at integrals of rational expressions of polynomials
Calculus 2
Class Notes
partialfractions, integralswithfractions, calculus2, Integrals, integralswithpartialfractions, integralsofrational, rationalexpressions
25 ?




Popular in Calculus 2

Popular in Math

This 11 page Class Notes was uploaded by Alejandra D. Rocha on Friday June 10, 2016. The Class Notes belongs to 2314 at University of Texas at El Paso taught by in Summer 2016. Since its upload, it has received 8 views. For similar materials see Calculus 2 in Math at University of Texas at El Paso.


Reviews for Integrals with partial fractions


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 06/10/16
Integrals with partial fractions In this section we are going to take a look at integrals of rational expressions of polynomials and  once again let’s start this section out with an integral that we can already do so we can contrast it  with the integrals that we’ll be doing in this section.     So, if the numerator is the derivative of the denominator (or a constant multiple of the derivative  of the denominator) doing this kind of integral is fairly simple.  However, often the numerator  isn’t the derivative of the denominator (or a constant multiple).  For example, consider the  following integral.     In this case the numerator is definitely not the derivative of the denominator nor is it a constant  multiple of the derivative of the denominator.  Therefore, the simple substitution that we used  above won’t work.  However, if we notice that the integrand can be broken up as follows,   then the integral is actually quite simple.     This process of taking a rational expression and decomposing it into simpler rational expressions  that we can add or subtract to get the original rational expression is called partial fraction  decomposition.  Many integrals involving rational expressions can be done if we first do partial  fractions on the integrand.   So, let’s do a quick review of partial fractions.  We’ll start with a rational expression in the form,   where both P(x) and Q(x) are polynomials and the degree of P(x) is smaller than the degree  of Q(x).  Recall that the degree of a polynomial is the largest exponent in the polynomial.    Partial fractions can only be done if the degree of the numerator is strictly less than the degree of  the denominator.  That is important to remember.   So, once we’ve determined that partial fractions can be done we factor the denominator as  completely as possible.  Then for each factor in the denominator we can use the following table  to determine the term(s) we pick up in the partial fraction decomposition.   Factor in Term in partial denominator fraction decomposition ,   ,      Notice that the first and third cases are really special cases of the second and fourth cases  respectively.   There are several methods for determining the coefficients for each term and we will go over  each of those in the following examples.   Let’s start the examples by doing the integral above.   Example 1  Evaluate the following integral.                                                              Solution The first step is to factor the denominator as much as possible and get the form of the partial  fraction decomposition.  Doing this gives,                                                     The next step is to actually add the right side back up.                                               Now, we need to choose A and B so that the numerators of these two are equal for every x.  To  do this we’ll need to set the numerators equal.                                                     Note that in most problems we will go straight from the general form of the decomposition to  this step and not bother with actually adding the terms back up.  The only point to adding the  terms is to get the numerator and we can get that without actually writing down the results of  the addition.   At this point we have one of two ways to proceed.  One way will always work, but is often  more work.  The other, while it won’t always work, is often quicker when it does work.  In this case both will work and so we’ll use the quicker way for this example.  We’ll take a look at the other method in a later example.   What we’re going to do here is to notice that the numerators must be equal for any x that we  would choose to use.  In particular the numerators must be equal for    and  .  So, let’s plug these in and see what we get.                                   So, by carefully picking the x’s we got the unknown constants to quickly drop out.  Note that  these are the values we claimed they would be above.   At this point there really isn’t a whole lot to do other than the integral.                                            Recall that to do this integral we first split it up into two integrals and then used the  substitutions,                                                 on the integrals to get the final answer.   Before moving onto the next example a couple of quick notes are in order here.  First, many of  the integrals in partial fractions problems come down to the type of integral seen above.  Make  sure that you can do those integrals.    There is also another integral that often shows up in these kinds of problems so we may as well  give the formula for it here since we are already on the subject.       It will be an example or two before we use this so don’t forget about it.   Now, let’s work some more examples.   Example 2  Evaluate the following integral.                                                           Solution We won’t be putting as much detail into this solution as we did in the previous example.  The  first thing is to factor the denominator and get the form of the partial fraction decomposition.                                               The next step is to set numerators equal.  If you need to actually add the right side together to  get the numerator for that side then you should do so, however, it will definitely make the  problem quicker if you can do the addition in your head to get,                                  As with the previous example it looks like we can just pick a few values of x and find the  constants so let’s do that.                               Note that unlike the first example most of the coefficients here are fractions.  That is not  unusual so don’t get excited about it when it happens.   Now, let’s do the integral.                               Again, as noted above, integrals that generate natural logarithms are very common in these  problems so make sure you can do them.   Example 3  Evaluate the following integral.                                                         Solution This time the denominator is already factored so let’s just jump right to the partial fraction  decomposition.                                        Setting numerators gives,                           In this case we aren’t going to be able to just pick values of x that will give us all the  constants.  Therefore, we will need to work this the second (and often longer) way.  The first  step is to multiply out the right side and collect all the like terms together.  Doing this gives,        Now we need to choose A, B, C, and D so that these two are equal.  In other words we will  need to set the coefficients of like powers of x equal.  This will give a system of equations that  can be solved.                   Note that we used x  to represent the constants.  Also note that these systems can often be quite large and have a fair amount of work involved in solving them.  The best way to deal with  these is to use some form of computer aided solving techniques.   Now, let’s take a look at the integral.                     In order to take care of the third term we needed to split it up into two separate terms.  Once  we’ve done this we can do all the integrals in the problem.  The first two use the  substitution  , the third uses the substitution   and the fourth term uses the formula given above for inverse tangents.   Example 4  Evaluate the following integral.                                                       Solution Let’s first get the general form of the partial fraction decomposition.                                       Now, set numerators equal, expand the right side and collect like terms.             Setting coefficient equal gives the following system.                  Don’t get excited if some of the coefficients end up being zero.  It happens on occasion.   Here’s the integral.                 To this point we’ve only looked at rational expressions where the degree of the numerator was  strictly less that the degree of the denominator.  Of course not all rational expressions will fit into this form and so we need to take a look at a couple of examples where this isn’t the case.   Example 5  Evaluate the following integral.                                                       Solution So, in this case the degree of the numerator is 4 and the degree of the denominator is 3.   Therefore, partial fractions can’t be done on this rational expression.   To fix this up we’ll need to do long division on this to get it into a form that we can deal with.   Here is the work for that.                                                      So, from the long division we see that,                                             and the integral becomes,                                    The first integral we can do easily enough and the second integral is now in a form that allows  us to do partial fractions.  So, let’s get the general form of the partial fractions for the second  integrand.                                                     Setting numerators equal gives us,                                                   Now, there is a variation of the method we used in the first couple of examples that will work  here.  There are a couple of values of x that will allow us to quickly get two of the three  constants, but there is no value of x that will just hand us the third.   What we’ll do in this example is pick x’s to get the two constants that we can easily get and  then we’ll just pick another value of x that will be easy to work with (i.e. it won’t give  large/messy numbers anywhere) and then we’ll use the fact that we also know the other two  constants to find the third.                     The integral is then,                           2 In the previous example there were actually two different ways of dealing with the x  in the  denominator.  One is to treat it as a quadratic which would give the following term in the  decomposition   and the other is to treat it as a linear term in the following way,   which gives the following two terms in the decomposition,     We used the second way of thinking about it in our example.  Notice however that the two will  give identical partial fraction decompositions.  So, why talk about this?  Simple.  This will work  for x , but what about x  or x ?  In these cases we really will need to use the second way of  thinking about these kinds of terms.       Let’s take a look at one more example.   Example 6  Evaluate the following integral.                                                                  Solution In this case the numerator and denominator have the same degree.  As with the last example  we’ll need to do long division to get this into the correct form.  I’ll leave the details of that to  you to check.                                       So, we’ll need to partial fraction the second integral.  Here’s the decomposition.                                                    Setting numerator equal gives,                                                         Picking value of x gives us the following coefficients.                                      The integral is then,                                        


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Amaris Trozzo George Washington University

"I made $350 in just two days after posting my first study guide."

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.