×

### Let's log you in.

or

Don't have a StudySoup account? Create one here!

×

or

by: Heli Patel

8

1

3

# Day 3 3339

Heli Patel
UH

Get a free preview of these Notes, just enter your email below.

×
Unlock Preview

Lec 3
COURSE
Statistics for the Sciences
PROF.
Prof. C Poliak
TYPE
Class Notes
PAGES
3
WORDS
KARMA
25 ?

## Popular in Math

This 3 page Class Notes was uploaded by Heli Patel on Sunday June 19, 2016. The Class Notes belongs to 3339 at University of Houston taught by Prof. C Poliak in Summer 2016. Since its upload, it has received 8 views. For similar materials see Statistics for the Sciences in Math at University of Houston.

×

## Reviews for Day 3

×

×

### What is Karma?

#### You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 06/19/16
Probability  3.1­3.7 ● Randomness  ­ We call a phenomenon random if individual outcomes are uncertain. ­ Chance behaviors unpredictable in the short run but has a regular and  predictable pattern in the long run. ● Probability  ○ The probability of any outcome of a random phenomenon is the  proportion of times the outcome would occur in a very long series of repetitions. ○ If, under a given assumption, the probability of a particular  observed event is extremely small, we conclude that the assumption is probably  not correct. ■ Classical method is use when all the experimental  outcomes are equally likely. If n experimental outcomes are possible, a  probability of 1/n is assigned to each experimental outcome. Example:  Drawing a card from a standard deck of 52 cards. Each card has a 1/52  probability o ■ Relative frequency method is used when assigning  probabilities is appropriate when data are available to estimate the  proportion of the time the experimental outcome will occur if the  experiment is repeated a large number of times. That is for any outcome,  A, probability of A is  ■ Subjective method of assigning probability is most  appropriate when one cannot realistically assume that the experimental  outcomes are equally likely and when little relevant data are available.  ● Definition  ○ A set is a collection of objects.  ○ The items that are in a set called elements.  ○ The sample space of a random phenomenon is the set of all  possible outcomes. Ω is used to denote sample space ○ Notation Description  ○ a ∈ A The object a is an element of the set A. ○ A ⊆ B Set A is a subset of set B. That is every element in A is also in B. ○ A ⊂ B Set A is a proper subset of set B. That is every element that is is in A is also in set B and there is at least one element in set B that is no in set A. ○ A ∪ B A set of all elements that are in A or B. ○ A ∩ B A set of all elements that are in A and B. ○ Ω  Called the universal set, all elements we are  interested in.  ○ ∼A The set of all elements that are in the universal set but not in set A. ○ S i Ei E1 ∪ E2 ∪ . . ., the union of multiple sets ○ T i Ei E1 ∩ E2 ∩ . . ., the intersection of multiple sets ● Permutations  ○ It allows one to compute the number of outcomes when r objects  are to be selected from a set of n objects where the order of selection is  important. The number of permutations is given by  Where n! = n(n − 1)(n − 2)· · ·(2)(1) Rocode for n!: factorial(n) ● Allowing Repeated Values  ○ When we allow repeated values, The number of orderings of n  objects taken r at a time, with repetition is n r ■  how many ways can you write 4 letters on a tag  using each of the letters   C O U G A R with repetition?  ■ 6^4 = 1296 ● Combinations ○ Counts the number of experimental outcomes when the  experiment involves selecting r objects from a (usually larger) set of n objects.  The number of combinations of n objects taken r unordered at a time is  ○ ● Several Objects AT Once ○ The number of permutations, P, of n objects taken n at a time with r objects alike, s of another kind alike, and t of another kind alike is ○ Example: How many different words (they do not have to be real  words) can be formed from the letters in the word MISSISSIPPI?  ■ n(M) = 1 n = 11 ■ n(I) = 4 ■ n(S) = 4 P=   .. 11!  ..   =  34650 ■ n(P) = 2      1! 4! 4! 2! ● Objects Taken of Circular ○ The number of circular permutations of n objects is (n − 1)!. ○ Example: In how many ways can 12 people be seated around a  circular table?  ○ (12­1)! = 11! = 39,916,800 ● Basic Probability Rules  ○ 1. 0 ≤ P(E) ≤ 1 for each event E. ○ 2. P(Ω) = 1  ○ 3. If E1, E2, . . . is a finite or infinite sequence of events such that Ei ∩ Ej = ∅ for i 6= j, then P( T i Ei) = P i P(Ei). If Ei ∩ Ej = ∅ for all i 6= j we say that the events E1, E2, . . . are pairwise disjoint. ○ 4. Complement Rule: P(E ∩ ∼ F) = P(E) − P(E ∩ F). In particular, P( ∼E) = 1 − P(E). ○ 5. P(∅) = 0 ○ 6. Addition Rule: P(E ∪ F) = P(E) + P(F) − P(E ∩ F). ○ 7. If E1 ⊆ E2 ⊆ . . . is an infinite sequence, then P( S i Ei) = limi→∞P(Ei). ○ 8. IF E1 ⊇ E2 ⊇ . . . is an infinite sequence, then P( T i Ei) = limi→∞P(Ei).

×

×

### BOOM! Enjoy Your Free Notes!

×

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

## Why people love StudySoup

Steve Martinelli UC Los Angeles

#### "There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Amaris Trozzo George Washington University

#### "I made \$350 in just two days after posting my first study guide."

Steve Martinelli UC Los Angeles

Forbes

#### "Their 'Elite Notetakers' are making over \$1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!
×

### Refund Policy

#### STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

#### STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com