New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here


by: Christina Madera
Christina Madera

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

just a test
Understanding Art
Dr. Brettell
Class Notes
25 ?




Popular in Understanding Art

Popular in Art History

This 3 page Class Notes was uploaded by Christina Madera on Monday August 22, 2016. The Class Notes belongs to AHST 2331 001 at University of Texas at Dallas taught by Dr. Brettell in Fall 2016. Since its upload, it has received 6 views. For similar materials see Understanding Art in Art History at University of Texas at Dallas.


Reviews for tester


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 08/22/16
Chipola College MGF 1107 10.3 Modular Arithmetic__________________________________________________ A modulo m system consists of m elements, 0 through m­1, and a binary operation. For example, the modulo 8 system consists of the elements {0,1,2,3,4,5,6,7}.   In any modulo system we can develop a set of modulo classes by placing all numbers  with the same remainder when divided by m in the appropriate modulo class.  Our  modulo classes come from the elements in our modulo m system.  For example, in our  modulo 8 system, we have the classes 0,1,2,3,4,5,6,7.  The sets are composed in the  following manner: 0 class = {…,­16,­8,0,8,16,24,…} 1 class = {…,­15,­7,1,9,17,25,…} 2 class = {…,­14,­6,2,10,18,26,…} 3 class = {…,­13,­5,3,11,19,27,…} 4 class = {…,­12,­4,4,12,20,28,…} 5 class = {…,­11,­3,5,13,21,29,…} 6 class = {…,­10,­2,6,14,22,30,…} 7 class = {…,­9,­1,7,15,23,31,…} An integer a is congruent to an integer b modulo m, written a≡b (mod m), if a has  remainder b when divided by m.   For instance, 23≡7 (mod 8) since 23 divided by 8 gives remainder 7. Determine the modulo class in each of the following: 1.  46≡? (mod 3) 2.  112≡? (mod 13) 3.  ­13≡? (mod 37) YOU TRY: a.  18≡? (mod 7) b.  42≡? (mod 7) c.  12≡? (mod 12) e.  144≡? (mod 32) f.  ­17≡? (mod 8) g.  1001≡? (mod 35) Chipola College MGF 1107 10.3 Modular Arithmetic__________________________________________________ We can also add, subtract, and multiply in modulo systems.  In order to do this, we  compute the solution using the given operation, and then we find which modulo class the  solution belongs to. Compute the following: 4.  9­1 in mod 6 5.  14+18 in mod 15 6.  11*12 in mod 15 YOU TRY: a.  675­236 in mod 20 b.  17­20 in mod 9 c.  55+19 in mod 18 e.  1050+67 in mod 25 f.  6*7 in mod 20 g.  ­2*­5 in mod 7 For the following exercises, assume that Sunday is represented by day 0, Monday is  represented by day 1, and so on.  If today is Thursday (day 4), determine the day of the  week it will be at the end of each period.  Assume no leap years. 1.  161 days 2.  2 years YOU TRY: a.  463 days b.  3 years, 27 days Chipola College MGF 1107 10.3 Modular Arithmetic__________________________________________________


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Amaris Trozzo George Washington University

"I made $350 in just two days after posting my first study guide."

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.