×

### Let's log you in.

or

Don't have a StudySoup account? Create one here!

×

or

by: Ren K.

36

3

6

# MTH 132 Calculus Week one notes MTH 132

Marketplace > Michigan State University > Mathematics > MTH 132 > MTH 132 Calculus Week one notes
Ren K.
MSU
GPA 4.0

Enter your email below and we will instantly email you these Notes for Calculus 1

(Limited time offer)

Unlock FREE Class Notes

Everyone needs better class notes. Enter your email and we will send you notes for this class for free.

These notes include lecture one, from August 31st and lecture two on September 2nd. These are free as part of a promotion! These lectures are guaranteed to help you in your studying.
COURSE
Calculus 1
PROF.
Z. Zhou
TYPE
Class Notes
PAGES
6
WORDS
CONCEPTS
Calculus, MTH, Math, Zhou, Z.Zhou
KARMA
Free

## Popular in Mathematics

This 6 page Class Notes was uploaded by Ren K. on Thursday August 25, 2016. The Class Notes belongs to MTH 132 at Michigan State University taught by Z. Zhou in Fall 2016. Since its upload, it has received 36 views. For similar materials see Calculus 1 in Mathematics at Michigan State University.

×

## Reviews for MTH 132 Calculus Week one notes

×

×

### What is Karma?

#### You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 08/25/16
MTH 132 ­ Lecture 1 ­ Tangents     Tangents  ● Tangent lines are lines that that touch a curve at one point.  ● Here’s how to find the tangent line at the point (x൦,f(x൦)).  ● It’s the same as finding the slope! The change in x / the change in y.  ​ ​● y​ ​ 1​​  m​  –​ 1​)  Secants  ● The same rule applies for secant lines.  ● Secant lines touch a curve at multiple points. (Two or more specifically.)  ○ The formula for secant lines is different.  ● It's the second y point ­ the first y point / the second x point ­ the first x point.  ● f(x൦+h)­f(x൦) / x൦+h­x൦ or simply f(x൦+h)­f(x൦) / h  ● The limit of a slope of a secant line is when h approaches 0.  Velocity  ● Basically, it’s the same idea for velocity.  ○ Y = f(t) = position of a particle.    ● Use it to find the average velocity from t൦ to t൦+h.  ● velocity(t൦) as the limit h approaches 0 = f(t൦+h) ­ f(t൦)/h = change in position/ change in  time.          Example:  2  ● Your precious laptop is dropped from a bridge has a position of y = f(t൦) = 16t .  ● It’s below the bridge after t seconds. Find the average velocity from [3,4] seconds.  ○ f(4)­f(3)/4­3  ○ 16*4 ­ 16 * 3 / 1  2 ○ 16[4 ­32 = 16x] = 112 ft/ sec  ● Find the velocity of your laptop at exactly 3 seconds.  ○ V = 3 as h →  0  ○ f(3+h)­ f(3) / h  ○ 16 * (3 + h) − 16 3 /h  * ○ 16 * (3 + h) − 3 /h  ○ 16 * 3  + h + 6h  −  3 /h  ○ 16(h + 6) = 16 + 6 = 96 ft/sec  ○ At exactly 3 seconds: 16(3+6) = 16*9 = 144 ft/ sec  ○ To miles: 96 * 3600/5280 = 65.5 miles.      MTH 132 ­ Lecture 2 ­ Limits    General definition  ● Let f(x൦) be a function near a. (a may not be in the domain)  ● We say that the limit of f(x൦) = L as x approaches a is denoted by limit f(x൦) = L  ● If f(x൦) is arbitrarily close to L by x sufficiently close to a (but not equal to) = the limit.       ○ We are interested in the behaviour of f(x൦) near a.  ○ Finding the limit has nothing to do with the value f(a).  Both Sides  ● For a limit to be defined ‘normally’ it has to have the same solution from both sides;  approaching from the positive side and approaching from the negative side.  ○ Otherwise it does not exist.   ○ Some can non exist because of oscillation.    ○ .    ● We can also define a one sided limit, where instead of approaching from both sides like  limit x approaches 1,  ○ we add a plus symbol to designate whether we’re approaching from the positive  side (the right)   ○ or a minus symbol to say we’re approaching from the negative side (the left).      ● If the limit exists from both sides, then the solution with the + and the solution with the ­  would be equivalent. Otherwise, if they’re different then the limit does not exist.  Finding limits!

×

×

### BOOM! Enjoy Your Free Notes!

×

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

## Why people love StudySoup

Steve Martinelli UC Los Angeles

#### "There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Allison Fischer University of Alabama

#### "I signed up to be an Elite Notetaker with 2 of my sorority sisters this semester. We just posted our notes weekly and were each making over \$600 per month. I LOVE StudySoup!"

Bentley McCaw University of Florida

Forbes

#### "Their 'Elite Notetakers' are making over \$1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!
×

### Refund Policy

#### STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

#### STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com