×

### Let's log you in.

or

Don't have a StudySoup account? Create one here!

×

or

by: Nick

111

16

4

# CS 2100 Week 1 Class notes CS 2100

Marketplace > University of Utah > Computer science > CS 2100 > CS 2100 Week 1 Class notes
Nick
The U
GPA 3.78

Enter your email below and we will instantly email you these Notes for Discrete Structures

(Limited time offer)

Unlock FREE Class Notes

Everyone needs better class notes. Enter your email and we will send you notes for this class for free.

Administrative issues, number sequences, recursive formulas, closed formulas, propositional logic
COURSE
Discrete Structures
PROF.
Zvonimir Rakamaric
TYPE
Class Notes
PAGES
4
WORDS
CONCEPTS
Discrete Structures, Math, logic
KARMA
Free

## Popular in Computer science

This 4 page Class Notes was uploaded by Nick on Saturday August 27, 2016. The Class Notes belongs to CS 2100 at University of Utah taught by Zvonimir Rakamaric in Winter 2016. Since its upload, it has received 111 views. For similar materials see Discrete Structures in Computer science at University of Utah.

×

## Reviews for CS 2100 Week 1 Class notes

×

×

### What is Karma?

#### You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 08/27/16
CS 2100 homework is due at the beginning of class if come to friday sessions will get answers to the homework can work with others best 3 out of 4 quizzes final exam is Dec 12 at 1030am there will be bonus points for participating in class or on canvas discussions.  homework is not graded heavily. no late homework.  can work with each other on the HW   don’t allow people to copy from you.  this class is about solving problems. So, practice solving problems.  everyone will struggle with some part of this class the sections of this class connect to each other only slightly instead of building upon each other. You should read before class  do not need to bring the textbook to class.  lectures will be a lot of problems ­­ sequences only 2 ways to represent patterns in numbers: recursive formula, closed formula.  5,7,9,11,13,15 = An = A n­12 A1 = 5  don’t forget to write the base case! or = An = 2*n + 3 there are a few patterns that cannot be written in both forms.  1,9,17,25,33,41, __49 = An = A n­18 A1 = 1 or = An = 8*(n­1) + 1 An = 8*n ­ 7 constant amount added: n * constant + starting number ­ constant?  1,4,9,16,25,36 = An = n^2 An = A ^2 n+1 A1 = 1 An = An­1 + (2n­1) An = (sqrt(An­1+ 1)^2 2,4,8,16,32,64 = a1= 2 An = 2A n­1 recursive formula must refer to previous terms not future terms.  there are some things in this class that don’t have a recipe to doing them. so Practice, practice,  practice. But can always use ones you know to figure out ones you don’t.  know how to use the Sigma notation for sums propositional logic preposition is a statement that can be either true or false.  we will use T = true and F = false or 1 , 0 x<4 is not a preposition, it is a predicate 3<4 is a preposition solve HW1 is not a preposition, it is an order we will use propositional variables (lower case letters)  binary operator AND = ^ = && OR   = v = || unary operator NOT = ­, Ex: ((p ^ q) v (­, q)) truth table is presents all possible values. We will need to know the truth tables for basic operations by memory.  2^n number of rows in table, so don’t forget any rows. Good to use a pattern like binary  counting.  AND p q p^q pvq F F F F F T F T T F F T T T T T NOT p ­,p F T T F will not be penalized for using different symbols commonly used.  (p v q) ^ (­,p V q) p q pVq ­,p ­,pVq all F F F T T F F T T T T T T F T F F F T T T F T T break up the equation into parts doing inside of () first. This is very mechanical and logical two statements are logical equivalent if always evaluate to the same truth table in every row (p v q) ^ (­,p V q) = q properties  p ^ q= q ^ p p V q = q V p

×

×

### BOOM! Enjoy Your Free Notes!

×

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

## Why people love StudySoup

Steve Martinelli UC Los Angeles

#### "There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Kyle Maynard Purdue

#### "When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the material...plus I made \$280 on my first study guide!"

Bentley McCaw University of Florida

Forbes

#### "Their 'Elite Notetakers' are making over \$1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!
×

### Refund Policy

#### STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

#### STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com