New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Computer Architecture - Sections 1.1-1.5

by: Aaron Maynard

Computer Architecture - Sections 1.1-1.5 CS 3340

Aaron Maynard
GPA 3.5
View Full Document for 0 Karma

View Full Document


Unlock These Notes for FREE

Enter your email below and we will instantly email you these Notes for Computer Architecture

(Limited time offer)

Unlock Notes

Already have a StudySoup account? Login here

Unlock FREE Class Notes

Enter your email below to receive Computer Architecture notes

Everyone needs better class notes. Enter your email and we will send you notes for this class for free.

Unlock FREE notes

About this Document

These sets of notes will be covering the subjects covered in CS 3340.003 (and other). This packet will cover topics within Chapter 1 Section 1.1 to Section 1.5 of Computer Organization and Design,...
Computer Architecture
Class Notes
Computer Science, Computer Networks, Science




Popular in Computer Architecture

Popular in Computer Science and Engineering

This 5 page Class Notes was uploaded by Aaron Maynard on Tuesday August 30, 2016. The Class Notes belongs to CS 3340 at University of Texas at Dallas taught by in Fall 2016. Since its upload, it has received 70 views. For similar materials see Computer Architecture in Computer Science and Engineering at University of Texas at Dallas.

Similar to CS 3340 at UTD

Popular in Computer Science and Engineering


Reviews for Computer Architecture - Sections 1.1-1.5


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 08/30/16
COMPUTERARCHITECTURE FALLSEMESTER2016 INSTRUCTOR:DR.KARENMAZIDI 22 August 2016 - Chapter 1 These sets of notes will be covering the subjects covered in CS 3340.003 (and other). This packet will cover topics within Chapter 1 of ​Computer Organization and Design, Fifth Edition: The Hardware/Software Interface​ by Patterson and Hennessay. Any material on these pages include but are not limited to presentational slides provided by the professor. Computer Abstractions and Technology What do people mean when they t​alk about ​abstraction? According to the interwebs (ie: Wikipedia), an abstraction is a technique for arranging complexity of computer systems. Dr. Mazidi gives three definitions in here class: ● Seeing the big picture ● Pushing details down to a lower level concealing the details ● Abstraction helps us manage complex systems Take with that what you will. 1 Big Picture of Changing Technology The dramatic changes in what is being called “The Computer Revolution” can be considered in alignment with ​Moore’s Law​. In 1965 the co-founder of Intel, Gordon Moore, made an observation that the number of transistors per square inch on integrated circuits had doubled every year since the integrated circuit was invented. This prediction held true for over 50 years. Computer Architecture is a way of saying the organization of a computer. This desired architecture is how a system is designed to achieve the desired functionality and sometimes as well as in the most efficient way possible. Different types or classes of computers have different architectures because they have different functionalities or purposes to fulfil. There are four major classes of computers: ​Personal​, ​Server​, Embedded​ ​and ​Supercomputers​. ● Personal Computers ○ General purpose ○ Runs a variety of software ○ Subject to cost/performance tradeoff ● Server Computers ○ Network based ○ High capacity, performance and reliability ○ Fast I/O ○ Ranged sizes, from credit card to buildings ● Supercomputers ○ Runs high-end scientific engineering calculations ○ Highest capability yet represent only a small fraction of market ● Embedded Computers ○ Make up of 95% of microprocessor sales ○ Hidden as components of systems ○ Stringent power/performance/cost restraints 2 The PostPC Era In the newest era of technology, we have the Personal Mobile Device, or ​PMD​. These devices are battery operated, connect to the internet, and can perform a multitude of tasks. These devices include but are not limited to smartphones, tablets and electronic glasses. What makes these devices so powerful is the newfound capabilities of cloud computing. Cloud computing can be made available through warehouse scale computers (​WSC​) and can be provided as Software as a Service (​SaaS​). Portions of the software runs on a personal mobile device, while other portions run in the cloud based server. This allows the devices to utilize memory more efficiently. The top companies who work on cloud computing are Amazon and Google. Processes There are four things that processes depend on to function correctly and efficiently. ● Algorithm ○ Determines number of operations executed ● Programming language, compiler, architecture ○ Determine number of machine instructions executed per operation ● Processor and memory system ○ Determine how fast instructions are executed ● I/O system (including OS) ○ Determines how fast I/O operations are executed These processes can be improved through what is called the 8 great ideas. 1. Design for M ​ oore’s Law ​ 2. Use a ​ bstraction to simplify design 3. Make the c ​ ommon case fast ​ 4. Performance v ​ ia ​parallelism ​ 5. Performance ​via ​pipelining ​ 6. Performance ​via ​prediction ​ 7. Hierarchy of memories ​ ​ 8. Dependability ​via redundancy 3 Your Program, and What it Means There are three parts that are required to develop a program. 1. Application software a. High-level language i. Level of abstraction closer to problem domain ii. Provides for productivity and portability b. Assembly language i. Textual representation of instructions c. Hardware representation i. Binary digits (bits) ii. Encoded instructions and data 2. System software a. Compiler: translates HLL code to machine code b. Operating System: service code i. Handling input/output ii. Managing memory and storage iii. Scheduling tasks & sharing resources 3. Hardware a. Processor, memory, I/O controllers There are several advantages of high-level languages. They can be easier to translate from pseudocode to code, and improve programmer productivity. It can also allow languages to be tailored to specific uses as well as increase their portability. However some applications need to be in an assembly language for efficiency. Programming in assembly can make you a better programmer because it allows you to understand what is going on “under the hood” and will help you write code more efficiently. Processors (CPU) The processor or central processing unit (CPU) is the electronic circuitry within a computer that carries out the instructions of a computer program by performing the basic operations specified by the instructions. The ​datapath ​performs on the data, which is sequenced by the control. The ​control ​also sequences memory such as the cache memory,​ a small fast SRAM memory for immediate access to data. 4 There are two types of memory to think about: ​volatile main memory​ and ​nonvolatile secondary memory​. The differences between the two are pretty simple to understand. Volatile main memory loses the instructions and data when the power to the computer turns off or is removed. Nonvolatile secondary memory stores its data on either a magnetic disk, flash memory or an optical disk. A magnetic disk would be a hard drive, flash memory a USB, and an optical disk a CDROM or DVD. Networks A network is defined as a group of two or more computer systems linked together. There are many types of computer networks, including the following: local-area networks (LANs): The computers are geographically close together (that is, in the same building). Networks can share communications, resources and give nonlocal access. Wide-area networks (WAN) is when we see as the internet today, and we access them usually through WiFi or Bluetooth. 5


Buy Material

Are you sure you want to buy this material for

0 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Amaris Trozzo George Washington University

"I made $350 in just two days after posting my first study guide."

Bentley McCaw University of Florida

"I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.