New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here


by: Habibah Dawodu

STUDYSOUP___1_physics_1.pdf Phys 211

Habibah Dawodu
GPA 3.78
View Full Document for 0 Karma

View Full Document


Unlock These Notes for FREE

Enter your email below and we will instantly email you these Notes for Physics 1

(Limited time offer)

Unlock Notes

Already have a StudySoup account? Login here

Unlock FREE Class Notes

Enter your email below to receive Physics 1 notes

Everyone needs better class notes. Enter your email and we will send you notes for this class for free.

Unlock FREE notes

About this Document

These notes basically covers what we did in class last week. motion, motion diagram, model and modelling, position, time, displacement, acceleration. Due to inavailabilty of a scanner, these note...
Physics 1
Dr Herat Athula
Class Notes
General Physics




Popular in Physics 1

Popular in Physics

This 10 page Class Notes was uploaded by Habibah Dawodu on Sunday September 4, 2016. The Class Notes belongs to Phys 211 at Slippery Rock University of Pennsylvania taught by Dr Herat Athula in Fall 2016. Since its upload, it has received 32 views. For similar materials see Physics 1 in Physics at Slippery Rock University of Pennsylvania.


Reviews for STUDYSOUP___1_physics_1.pdf


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 09/04/16
Motion simply is the change of a physical body’s position with time. There are 4 fundamental  types of motion which are:  Linear motion­Example, A skateboarder moving along a straight line.  Circular motion­This involves motion along a circular trail. Example, walking round a  circular fountain.  Projectile motion­It involves launching an object in air and the then it coming back down due to the law gravity. It always forms a curved path. Example, shotput, javelin or  shooting an arrow in the air  Rotational motion: it involves motion of a stiff body rotating about its axis. Example, a  ball spinning on the ground about its axis. The first three motion listed above are all called translational motion. This is because they move  their whole body freely through space.   Important point: Trajectory can be defined as the trail or pathway in which a body moves. This  pathway can be unswerving or swerving (straight or bent). The fourth motion (Rotation motion) on the other hand differs from the other three because it  involves movement of a body but without change in position of the body. Making a Motion Diagram. Motion diagram is defined as the combined or edited image which shows a body’s position at  equal time interval. Making a motion diagram is not difficult at all because it involves only the use of a video camera which can take up to 30 images per second. Every image it takes, is individually known as a  frame. Imagine you lay all the frames on top each other to create a combined image, this  combined image you created will show different position of the body at constant time interval.  For example, Bob takes a picture of a moving body, the time interval between each position can  be maybe 12ms. It can only be 12ms, not any other time interval because the time interval is  equally spaced. So if there are six positions, the first position from the starting point will be  12ms, the second from starting point will be 24ms, the third from the starting point will be 36ms  etc.                                                                      Examples of Motion Diagrams. There are three examples of motion diagrams: 1. The motion diagram that shows the body at constant speed, as a result of equal distance  between the physical body during motion. 2. The motion diagram that shows the body with increasing speed, as a result of increasing  distance between the physical body during motion. 3. The motion diagram that shows the body with decreasing speed, as a result of decreasing  distance between the physical body during motion. Models and Modelling. Modelling can simply be defined as Removing details in order to concentrate on vital features. Model is a realistic and simplified version of something but still captures the essence of what is  being studied. It is a simplified version of something complex but will still help us understand  the complex thing. For example, summary of an essay or a novel in which you are expected to  give important information and remove all unnecessary details OR the figures 0,1,2,3,4,5,6,7,8,9  that are the simple figures we all know that gives us trillions of other complex figures. German­ born theoretical physicist, Albert Einstein once said, “Physics should be as simple as possible­ but not simpler.” Types of Models There are two types of model 1. Descriptive model: It is used to describe a phenomenon or a system. 2. Explanatory model: It is usually based on physics law to explain a phenomenon or  system. It also is used to test against experimental data. The Particle Model A particle is defined as a body that can be depicted as a mass at a single point in space. It does  NOT consist of a size, shape, or a distinction between its top and bottom or its front and back.  The good thing about the particle model is that it allows us to treat a physical body as though all  of its mass is concentrated into a single pint. This further allows us to denote it as a single dot.    . Important information: Particle model can only be used represent translational motion. (Linear,  circular and projectile motion). Rotational motion on the other hand cannot be depicted with  Particle model because its axis is fixed. Position, Time and Displacement. When using a motion diagram, it is likely that you want to know an object’s position and time at  that position.  You can measure a position by using a coordinate system grid over the motion  diagram. You will then trace the object’s (x, y) coordinates. A coordinate system is used in  analyzing motion. The origin of the coordinate system can be placed anywhere depending on the  writer’s preference. Time can also be a coordinate system. To understand this, you can visualize it this way. Pick any point during motion and label it as t=0 seconds. This time t=0 can be the time you resolve or  decide to start your stop watch. This time t=0, you start is regarded the origin of your time  coordinates. For example, Brooke and Taylor are about to go for a walk around their community. Brooke decides to start her stop watch just after she comes out of the house, while Taylor walks  half of community before she starts her stopwatch. Brooke’s origin starts at the time she comes  out of the house while Taylor’s origin starts at the time she walked half the community. NOTE: It is possible for an object to be in motion before you start your stop watch like in  Taylor’s situation. All those time before you start you stop watch is denoted as negative, mainly  because it occurs before or to left of the origin. Position Vector: is an arrow that is drawn from the origin to a position on the motion diagram.  The position vector is denoted with  r .  r  is always equal to the length of the position  vector and the angle of the position vector. The previous sentence explains an alternative form to coordinate (x, y). Scalar vector Is a sole number with a unit that is used to  Cannot be described as a lone number, rather  describe a physical quantity. (has only  as a quantity with magnitude and direction. magnitude, no direction). Example: Temperature, time, distance, mass  Example: displacement, acceleration, force,  etc. velocity, momentum etc. Can be positive, negative or zero Can be positive negative or zero Scalar symbols are indicated without arrows.  Vector symbols are indicated with arrows  Example, g, K facing the right on top of the symbols.  Example,  g,K⃗ . NOTE: It is key to know the difference between scaler and vector quantities because it is  possible to have scaler and vector quantities in the same question.  Vector arrows over the symbols should always be pointed to the right never towards the left.  ´ ´  or  K  is NOT allowed.                                                        Displacement. Displacement is used to demonstrate a change of position of a physical body. For example, we  have two dots representing the motion diagram of a car, the displacement of that car is the arrow  drawn in between the two dots, showing the change in the car’s position. The symbol for displacement is  ∆⃗r . Motion  Position Vector                                                  Displacement. change of a physical body  an arrow that is drawn from  change of position of a  with time the origin to a position on the  physical body motion diagram r ∆ r I put this table above for you to differentiate because definitions and symbols sometimes can be  confusing.                                                 Addition and Subtraction of Vectors. Adding vector quantities differs from adding numbers. Subtracting vector quantities involves  ⃗ ⃗ ⃗ ⃗ adding negative vectors. Example  M ­ N  = M+(−N) .  ⃗ ⃗ ⃗ ⃗ ⃗ Zero vector: occurs when a vector has zero length. Example,  M−M=M+ (−M =0 .  The  difference between a positive and negative vector of a position is the negative faces opposite  direction. Initial position: r i                                  Final position:  ⃗ f ⃗ ⃗ ∆ r ∆ r r ⃗ f   i               OR              =    f   i        When using a graph, the displacement vector is a vector arrow drawn from the initial position to  the final position. NOTE: A vector can be moved around as long as its length and the direction it points doesn’t  change.                                    Motion Diagrams with Displacement Vectors. Important information: A physical body that starts and ends with resting position usually has  little space in between its initial and final dots. You should always put the displacement vector  arrows in between the dots.   If the displacement vector of a physical body is increasing in length then the object is  speeding up.  If the displacement vector of a physical body is decreasing in length then the object is  speeding down.                                                     Time Interval Time interval, also known as change in time,  ∆ t  = tf  ti   used to measure the elapsed  time as a body moves from an initial position ⃗ i    initial time i to a final position  ⃗ f , at final time tf The change in time is the same no matter what time instrument is used.                                                      Velocity Average Speed is a quantity used to measure how fast or slow a physical body moves. distancetraveled d Average speed =  change∈time  = ∆t  . Average velocity is the quantity that measures not only the distance traveled by a physical  body but also the direction of motion during a time interval. OR (a better definition) Average velocity is the quantity that measures a body’s displacement during time interval ∆ t. ∆r⃗ displacement                                          =         =    avg  ∆t change∈time NOTE: Displacement is very important when studying motion because it not only tells you  the distance traveled by an object, but also the direction the object is moving.  It is very essential when studying physics that you should be able to differentiate between  speed and velocity. Speed measures how fast (18mph) while velocity measures how fast and  what direction (18mph, south). v Important information: From now on average velocity  avg,ould be referred to as symbol v .                                     Motion Diagram with Velocity Vectors. The velocity  v,  and displacement  ∆⃗r ,  vector arrows both point in the same direction. The velocity  v,  and displacement  ∆⃗r ,  vector arrows both have the same length. So this tells us that we can use velocity vectors and displacement vectors interchangeably  when drawing motion diagrams. Also, the length of the velocity  ⃗vector  and average  speed that a body moves is the same.  The above information might be confusing but look at it this way. Velocity and displacement  are very similar, except that velocity involves change in time. Its distance travelled and  direction is still the same with that of displacement.                                                           Linear Acceleration. ∆⃗v=v⃗ ⃗ Change in velocity  f   i occurs in two ways:  Change in speed during motion  Change in direction during motion Initial velocity: ⃗ i                                                   Final velocity:  ⃗ f change∈velocity ∆⃗v Rate of change of velocity =  change∈time  =  ∆t  = average acceleration. a ∆⃗v   avg  ∆t  .  NOTE: Both the change in velocity vector and acceleration vector point in the same direction,  but they do not necessarily have the same magnitude. Just like that of displacement vector and  velocity vector. We would also from now on refer to average acceleration symbol  a  as  ⃗ . avg                   Relationship between Acceleration and Velocity in Motion Diagram. 1. Whenever a body’s  ⃗  and  a  are facing the same direction, its speeding up. 2. Whenever a body’s  v  and  a  are facing the opposite direction, its slowing down. 3. Whenever a body’s acceleration  ⃗  =0, its velocity is unchanging (constant). Note: In Physics acceleration means change in velocity not just speeding up.


Buy Material

Are you sure you want to buy this material for

0 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Jennifer McGill UCSF Med School

"Selling my MCAT study guides and notes has been a great source of side revenue while I'm in school. Some months I'm making over $500! Plus, it makes me happy knowing that I'm helping future med students with their MCAT."

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.