New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

Week 1 Lecture 2: Nucleic Acids, DNA, and RNA Review

by: Justin Bartell

Week 1 Lecture 2: Nucleic Acids, DNA, and RNA Review PCB 4024

Marketplace > Florida State University > Biology > PCB 4024 > Week 1 Lecture 2 Nucleic Acids DNA and RNA Review
Justin Bartell
GPA 3.977

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

This lecture reviews the structure and function of DNA and highlights the history of the study of DNA. It ends with a brief description of Molecular Techniques.
Molecular Biology
Dr. Stroupe
Class Notes
25 ?




Popular in Molecular Biology

Popular in Biology

This 4 page Class Notes was uploaded by Justin Bartell on Monday September 5, 2016. The Class Notes belongs to PCB 4024 at Florida State University taught by Dr. Stroupe in Fall 2016. Since its upload, it has received 41 views. For similar materials see Molecular Biology in Biology at Florida State University.


Reviews for Week 1 Lecture 2: Nucleic Acids, DNA, and RNA Review


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 09/05/16
PCB 4024–  Week 1 – 02 (Thursday Lecture 9/1/2016) Nucleic Acids, DNA, and RNA Review I. Nucleic Acids: encode genetic information 2 types: DNA and RNA a. Deoxyribonucleic acid (DNA) i. Deoxyribonucleotides are its building blocks ii. A single DNA molecule contains hundreds of genes and millions of  nucleotides; The sequence of the nucleotides is the informative part 1. There are about 3 billion bases in the human genome (compared to  about 600,000 in a bacteria). 2. Each human (linear) chromosomes have 51­245 million base pairs 3. Genes (the bits that code for protein) comprise only about 2% of  the genome. 4. There are 46 chromosomes in human somatic cells and 23 in sex  cells (22 unique somatic chromosomes + 2 sex chromosomes). iii. Typically double stranded (antiparallel) iv. In eukaryotes, DNA is in nucleus or mitochondria/chloroplasts 1. In mitochondria/chloroplasts DNA is found as a circular plasmid 2. In nucleus, DNA is found as chromosomes v. In prokaryotes DNA is in nucleoid. 1. plasmid b. Ribonucleic Acid (RNA) i. Ribonucleotides are its building blocks ii. To access the info in DNA< a single, complementary RNA molecule is  made. The DNA remains unchanged. iii. In eukaryotes, RNA is found in nucleus and cytoplasm. iv. Typically single stranded. II. Polynucleotide Structure a. Nucleotide has 3 parts: i. Nitrogenous base (ATCG in DNA, AUCG in RNA) 1. Pyrimidine­6 membered ring (cytosine, thymine, and uracil) 2. Purine­6+5membered rings (adenosine, guanine) ii. 5­carbon sugar, either ribose or deoxyribose iii. Phosphate b. Nucleoside is the nitrogenous base + sugar. c. Polynucleotide is directional because is building blocks are directional i. Covalent linkage from the 5’ Carbon to the hydroxyl of the 3’ Carbon. III. Central Dogma: DNA   –[translation]    RNA    –[transcription]   protein What matters is the sequence of nucleotides in DNA. a. What happens if DNA sequence changes? i. Change could be damaging: results in bad protein product or changes the  correct phenotype of cell. ii. Change could be neutral: does not change the phenotype of the cell iii. Change can be productive: results in better protein product or makes the  cell/organism more viable. iv. The change may or may not be passed down. IV. DNA is the genetic information a. Genotype (genetic information) vs. Phenotype (physical implementation) b. How did we get to the understanding of genetic inheritance? Which is the genetic  information: DNA or protein? [hint: it’s DNA] Several landmark experiments: i. Griffith 1. Live Streptococcus pneumonia could be pathogenic or  nonpathogenic.  Step 1: kill pathogenic bacteria Step 2: mix with nonpathogenic bacteria Step 3: test nonpathogenic bacteria for pathogenicity (is it now  pathogenic?) ­ They did become pathogenic! Conclusion: Something (other than live cells) “transformed”  [altered] both the genotype and phenotype of the nonpathogenic  pneumonia. ii. Avery 1. Isolated each type of macromolecule (DNA, RNA, and protein)  and attempted to transform bacteria with it 2. Only DNA resulted in new phenotypes 3. Conclusion: DNA is genetic material iii. Hershey and Chase 1. Made phage with either radiolabeled sulfur 35S (highlights protein  coat) or phosphorus 32P (highlights DNA).  2. Let phage infect bacteria 3. Physically removed nongenetic material (via household blender  XD)  4. Centrifuge to isolate infected bacteria 5. Analyzed to find radio labeled genetic info 6. Conclusion: DNA is genetic material iv. Chargaff 1. Measured the composition of bases in different species and found  they all differed but found out: 2. “Chargaff’s rule”: concentration of adenosine is equal to the  concentration of thymine and concentration of cytosine is equal to  the concentration of guanine. a. Aka: [A] = [T] and [C] = [G] c. How does DNA work? First we need to know what it looks like (more  experiments): i. Linus Pauling 1. Proposed triple helix model for DNA (incorrect) ii. Maurice Wilkins and Rosalind Franklin 1. X­ray diffraction of DNA 2. Tried to calculate the structure of DNA from this diffraction a. Proposed that phosphates were on the outside (correctly). iii. James Watson and Francis Crick 1. Used Franklin’s model to propose double helix iv. Conclusion 1. Purine­pyrimidine pairs is the only arrangement for the DNA  double helix to get a constant diameter. V. Molecular Techniques a. Gel electrophoresis i. Run DNA from cathode (­) to anode (+) ii. Smaller stuff moves farther 1. Larger DNA strands at top, smaller DNA strands at bottom iii. Separates on size, shape, and charge b. Autoradiography i. Start with gel electrophoresis ii. Run a gel on a material that has been labeled with something that will  react with film (often 32P, recently fluorescent tags) iii. Transfer that information to film or a digital detector c. Nucleic acid hybridization i. Start with gel electrophoresis ii. Run a gel iii. “Blot” – transfer to membrane 1. Now DNA or RNA is on membrane iv. Block (because DNA and RNA strands tend to be “stick” and want to  combine) v. Probe with complementary fragment to highlight specific regions [thing on membrane / probe material] 1. Southern Blots – DNA/ DNA (named for Dr. Southern) 2. Northern Blots – RNA/RNA (opposite of southern ­_­) 3. Eastern Blots – protein/antibody 4. Western Blots – protein/ post translational modification tag 5. Southeastern Blots – protein/DNA d. DNase footprinting i. Label DNA ii. Mix DNA with protein of interest (in this case 3 increasing amounts in  lanes 2­4, plus 0 protein in lane 1). iii. Treat DNA:protein with an enzyme that degrades DNA (DNase). iv. Run a gel. v. If the protein binds the DNA, the DNase can’t cut. Otherwise, you see the  resulting fragments. vi. Comparing to lane 1 to 2­3 tells you about where the protein binds and  shows a direct interaction between the DNA and protein


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Kyle Maynard Purdue

"When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the I made $280 on my first study guide!"

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."


"Their 'Elite Notetakers' are making over $1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.