×

Let's log you in.

or

Don't have a StudySoup account? Create one here!

×

or

Logic I Notes, Week 4, Class 09/06

by: Amanda Notetaker

7

1

6

Logic I Notes, Week 4, Class 09/06 PHL 1100

Marketplace > Appalachian State University > Philosophy > PHL 1100 > Logic I Notes Week 4 Class 09 06
Amanda Notetaker
ASU

Get a free preview of these Notes, just enter your email below.

×
Unlock Preview

These notes contain: Homework #5 answers Notes about Exam 1 Statement forms and Statements Replacement routines Argument forms and Arguments Homework #6
COURSE
Logic I
PROF.
Dr. Patrick Rardin
TYPE
Class Notes
PAGES
6
WORDS
CONCEPTS
logic, Rardin, Amanda, Horsley, Homework, statement, replacement, forms, Argument
KARMA
25 ?

Popular in Philosophy

This 6 page Class Notes was uploaded by Amanda Notetaker on Wednesday September 7, 2016. The Class Notes belongs to PHL 1100 at Appalachian State University taught by Dr. Patrick Rardin in Fall 2016. Since its upload, it has received 7 views. For similar materials see Logic I in Philosophy at Appalachian State University.

×

Reviews for Logic I Notes, Week 4, Class 09/06

×

×

What is Karma?

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 09/07/16
Logic I Week 4 09/06 Homework #5 Answers Pg 308 A­11. F A­12. F B­11. (~A כ ~B) ∙ C B­12. A כ B B­13. B כ A B­14. C כ (A ∙ B) B­16. (B ᵛ C)כ A B­17. B ᵛ C B­18. A כ (B ᵛ C) B­19. ~B ᵛ A Notes about the exam next week (09/15) The test questions will be straightforward, not comma crazy like the textbook. Memorize the four main truth tables. These will help you do the calculations that we worked on  last Thursday. You do NOT need to memorize all of the calculations we did last week. Just the  four main truth tables. Statement and Argument Forms Statement – a logical symbolization that only uses statement letters (uppercase letters) Statement form – a logical symbolization that only uses statement variables (lowercase letters),  used to formulate statements Specific form – 1 statement letter substituted for each different statement variable (1:1) and only simple statements are used. Ex.) Statement: Aכ (~A ᵛ T)         Specific Forכ:(~p ᵛ q) Replacement routines (RR)– The substitutions that occur to turn a statement form into a  statement. Logic I Week 4 09/06 Types: 1 for 1, 1 for many, NOT many for 1 Examples Statement Form Logical Symbolization Replacement Other Notes Routine  Statement Example # Substitution s i. p כ (~p ᵛ q) 1. A  כ (~A ᵛ T) A for p Statement from Form i.  T for q (and Form ii. and Form iii) Form i. is the specific form of this statement. RR 1:1 2. (A ∙ T)כ [~(A∙ T) ᵛ (C ∙ T)] A ∙ T for p Statement from Form i.  C ∙ T for q RR 1:M 3. A  כ (~A ᵛ A) A for p Statement from Form i. A for q RR 1:1 4. ~A  כ (A ᵛ ~B) ~A for p NOT statement from Form ~B for q i. If it followed the form, it  would look like this: ~A כ (~~A ᵛ ~B) ii. p כ q 1. A  כ (~A ᵛ T) A for p RR 1:1 and 1:M ~A ᵛ T for q iii. p 1. A  כ (~A ᵛ T) A  כ (~A ᵛ T)  RR 1:M for p Argument form – Two or more statement forms put together to express an argument. Includes at  least one premise and a conclusion, and only written with statement variables. Example Argument form: Arguments with only 1 premise p כ q Premise 1 Conditional cannot come from this form; it p Premise 2 Antecedent of Conditional cannot be simplified. It also cannot get more complicated, except by q Conclusion Consequent of Conditional substituting compound statements for the statement variables. Logic I Week 4 09/06 Argument: If Al is happy then Betty is happyPremise 1 p כ q Al is happy. Premise 2 p Betty is happy. Conclusion q Practice Questions from Textbook Done in Class Pg 313 – For each letter in Group A, write any numbers from Group B that correspond to  argument forms which could have created that argument. State which number is the specific  form, if applicable. a. 3. (specific) b. 6. (specific) c. 4. (specific) m. 3.  24. HOMEWORK # 6 DUE 09/08: PG 313 A f., h., i., Read 8.6, 8.7, 8.8 NOTE: EXAM 1 NEXT THURSDAY, 09/15 I WILL POST A STUDY GUIDE NO LATER THAN SUNDAY, 09/11. Logic I Week 4 09/06 Homework #5 Answers Pg 308 A-11. F A-12. F B-11. (~A כ ~B) · C B-12. A כ B B-13. B כ A B-14. C כ (A · B) B-16. (B ᵛ C)כ A B-17. B ᵛ C B-18. A כ (B ᵛ C) B-19. ~B ᵛ A Notes about the exam next week (09/15) The test questions will be straightforward, not comma crazy like the textbook. Memorize the four main truth tables. These will help you do the calculations that we worked on last Thursday. You do NOT need to memorize all of the calculations we did last week. Just the four main truth tables. Statement and Argument Forms Statement – a logical symbolization that only uses statement letters (uppercase letters) Statement form – a logical symbolization that only uses statement variables (lowercase letters), used to formulate statements Specific form – 1 statement letter substituted for each different statement variable (1:1) and only simple statements are used. Ex.) Statement: A כ (~A ᵛ T) Specific Form: p כ(~p ᵛ q) Replacement routines(RR)– The substitutions that occur to turn a statement form into a statement. Types: 1 for 1, 1 for many, NOT many for 1 Logic I Week 4 09/06 Examples Statement Form Logical Symbolization Replacement Other Notes Routine Statement Substitutions Example # i. p כ(~p ᵛ q) 1. A כ (~A ᵛ T) A for p Statement from Form i. T for q (and Form ii. and Form iii) Form i. is the specific form of this statement. RR 1:1 2. (A · T)כ [~(A· T) ᵛ (C · T)] A · T for p Statement from Form i. C · T for q RR 1:M 3. A כ (~A ᵛ A) A for p Statement from Form i. A for q RR 1:1 4. ~A כ(A ᵛ ~B) ~A for p NOT statement from Form ~B for q i. If it followed the form, it would look like this: ~A כ (~~A ᵛ ~B) ii. p כq 1. A כ (~A ᵛ T) A for p RR 1:1 and 1:M ~A ᵛ T for q iii. p 1. A כ (~A ᵛ T) A כ (~A ᵛ T) RR 1:M for p Argument form – Two or more statement forms put together to express an argument. Includes at least one premise and a conclusion, and only written with statement variables. Example Argument form: Arguments with only 1 premise cannot p כq Premise 1 Conditional come from this form; it cannot be p Premise 2 Antecedent of Conditional simplified. It also cannot get more complicated, except by substituting q Conclusion Consequent of Conditional compound statements for the statement variables. Argument: If Al is happy then Betty is happy.Premise 1 pכ q Al is happy. Premise 2 p Betty is happy. Conclusion q Logic I Week 4 09/06 Practice Questions from Textbook Done in Class Pg 313 – For each letter in Group A, write any numbers from Group B that correspond to argument forms which could have created that argument. State which number is the specific form, if applicable. a. 3. (specific) b. 6. (specific) c. 4. (specific) m. 3. 24. HOMEWORK # 6 DUE 09/08: PG 313 A f., h., i., Read 8.6, 8.7, 8.8 NOTE: EXAM 1 NEXT THURSDAY, 09/15 I WILL POST A STUDY GUIDE NO LATER THAN SUNDAY, 09/11.

×

25 Karma

×

×

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Jennifer McGill UCSF Med School

"Selling my MCAT study guides and notes has been a great source of side revenue while I'm in school. Some months I'm making over \$500! Plus, it makes me happy knowing that I'm helping future med students with their MCAT."

Steve Martinelli UC Los Angeles

Forbes

"Their 'Elite Notetakers' are making over \$1,200/month in sales by creating high quality content that helps their classmates in a time of need."

Become an Elite Notetaker and start selling your notes online!
×

Refund Policy

STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com