×

### Let's log you in.

or

Don't have a StudySoup account? Create one here!

×

or

## STUDYSOUP_2_Physics_1.pdf

by: Habibah Dawodu

29

0

5

# STUDYSOUP_2_Physics_1.pdf Phys 211

Habibah Dawodu
SRU

Get a free preview of these Notes, just enter your email below.

×
Unlock Preview

The continuation of where i stopped in the last note till the beginning of chapter 2 stopping where we stopped last class.
COURSE
Physics 1
PROF.
Dr Herat Athula
TYPE
Class Notes
PAGES
5
WORDS
KARMA
25 ?

## Popular in Physics

This 5 page Class Notes was uploaded by Habibah Dawodu on Saturday September 10, 2016. The Class Notes belongs to Phys 211 at Slippery Rock University of Pennsylvania taught by Dr Herat Athula in Fall 2016. Since its upload, it has received 29 views. For similar materials see Physics 1 in Physics at Slippery Rock University of Pennsylvania.

×

## Reviews for STUDYSOUP_2_Physics_1.pdf

×

×

### What is Karma?

#### You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 09/10/16
Motion in one dimension. As we all know Motion ­ is the change of a physical body’s position with time. Three basic  quantities position  r ,  velocity  ⃗, and acceleration  ⃗ are used to relate or shed more  light on the motion of an object. They are all examples of vector quantities which have both  magnitude and direction because motion deals with direction. Motion in one dimension is a motion that involves its vectors pointing towards forward or back  ward direction. Determining the Signs of Position, Velocity and Acceleration   Check textbook for Tactics box 1.4, a table and a graph on how to determine signs of position,  velocity and acceleration. Solving Problems in Physics. Solving problems in Physics is different from that of other sciences because it usually leads to  the breakdown of a question and carefully understanding what is being asked of you. Unlike  math that just asks you a direct question what is 700 + 87? , Physics questions require you to  translate words to symbols to aid clarification. Using Symbols  Using symbols is very important in Physics thereby Scientists and engineers believe it is tool that should be used when solving Physics problems. Symbol is a language or a representation that  shows us with accuracy the association between quantities in a problem. Example, of symbols  are x when representing when horizontal axis,  ⃗   when representing acceleration vector, d  when representing distance etc. Symbols can also have subscripts such as s and s representing initial speed and final speed. f  i    Drawing Pictures Drawing pictures is a very good tool in solving problems in physics. It allows you to visualize a  problem and draw a picture of what you understand. It is an easier way because by drawing a  diagram you have in a way simplified a problem because then you have something visual of  physical to work with. It also helps you remember because while drawing down you are also  learning and understanding the material more. Representations During the continuous study of General Physics, four Representations of knowledge would be  used. 1. Verbal representation. 2. Pictorial representation. 3. Graphical representation. 4. Mathematical representation. A Problem –Solving Strategy. 1) Model: Helps us to look at realistic and simplified version of something but still captures  the essence of what is being studied. For example particle model that we use in class to  represent an object or physical body with a single dot. (Verbal representation). 2) Visualize: This really helps you improve your problem solving skills by making you  imagine and examine a problem. This also helps you eliminate the impossible in a  problem. For example you can visualize that it is very impossible for an object to be or  occupy to positions at once. (Pictorial and graphical representations). 3) Solve. (Mathematical representation). 4) Access. This is just crosschecking your work. You check if answers or method of solving is sensible. You check for signs and units. Chapter 2 Uniform Motion Uniform motion is described as motion along a straight path or trail at unchanging or  continuous speed. It is also shortly defined as the type of motion that has constant velocity  because it involves constant speed and direction (the straight path we are talking about).  Graphically, we say a physical body has a uniform motion if only its position versus time  graph has a straight stroke or line. How to Get a Position versus Time Slope. Position versus time graph’s slope is what we know as average velocity which is the change  in displacement over the change in time. When looking at one dimensional motion, we say  the slope of the horizontal axis is the change of horizontal axis over the change in time which ∆ x is denoted   avg=  ∆t   while that of the vertical axis is the change in the vertical axis over the change in time. Note: Because of uniform motion involves constant velocity, the slope of uniform motion  graph is always going to be the same no matter the position. And also when dealing with  uniform motion we see velocity only as this, v not as this, v avg. Important information: When there is a steeper slope in position versus time graph, this just  tells us that the body is at faster speed. Whenever there is a negative slope it means negative  velocity. Note: Always put the units after you find the velocity based on the ratio on both axes. The Mathematics of Uniform Motion It is possible to generate a new axis other than the x­axis and y­axis. This new axis is called  generic axis and you can denote it with a letter of your choice. For example, f­axis, l­axis, m­ axis etc.  Let’s say we want to find the slope or velocity of the h­axis on the position­time graph.  rise ∆ h h final−hinitial v =   =   =    . h  run ∆t t final−tinitial Uniform motion model. Check textbook for this definition.  Instantaneous Velocity. Instantaneous velocity is the velocity of a physical body at a particular or lone instant of  time. Unlike uniform motion where the velocity is constant, instantaneous velocity’s velocity is not constant, thereby it changes. This makes its graph curvy.  To find the slope of its curve at a point or instant, you will draw a straight line also known as tangent across the point on the curve. This line you created is what you will use to calculate  the slope just like the way you find the slope of a curve by making a straight line at the edge  of the curve in Calculus 1.  Note: The more steep the slope is, the greater the size of the velocity.

×

×

### BOOM! Enjoy Your Free Notes!

×

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

## Why people love StudySoup

Bentley McCaw University of Florida

#### "I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Amaris Trozzo George Washington University

#### "I made \$350 in just two days after posting my first study guide."

Bentley McCaw University of Florida

#### "I was shooting for a perfect 4.0 GPA this semester. Having StudySoup as a study aid was critical to helping me achieve my goal...and I nailed it!"

Parker Thompson 500 Startups

#### "It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!
×

### Refund Policy

#### STUDYSOUP CANCELLATION POLICY

All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email support@studysoup.com

#### STUDYSOUP REFUND POLICY

StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here: support@studysoup.com

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to support@studysoup.com