New User Special Price Expires in

Let's log you in.

Sign in with Facebook


Don't have a StudySoup account? Create one here!


Create a StudySoup account

Be part of our community, it's free to join!

Sign up with Facebook


Create your account
By creating an account you agree to StudySoup's terms and conditions and privacy policy

Already have a StudySoup account? Login here

KIN 300 Scott Fall 2016 Ch 9 lecture notes

by: Natalie Wong

KIN 300 Scott Fall 2016 Ch 9 lecture notes KIN 300

Marketplace > California State University Long Beach > Kinesiology > KIN 300 > KIN 300 Scott Fall 2016 Ch 9 lecture notes
Natalie Wong
Long Beach State
GPA 4.0

Preview These Notes for FREE

Get a free preview of these Notes, just enter your email below.

Unlock Preview
Unlock Preview

Preview these materials now for free

Why put in your email? Get access to more of this material and other relevant free materials for your school

View Preview

About this Document

These notes are comprised of what was covered in the lecture video shown in class
Kristen Scott
Class Notes
kin300, Biomechanics, Kinesiology
25 ?




Popular in Biomechanics

Popular in Kinesiology

This 3 page Class Notes was uploaded by Natalie Wong on Sunday September 11, 2016. The Class Notes belongs to KIN 300 at California State University Long Beach taught by Kristen Scott in Fall 2016. Since its upload, it has received 4 views. For similar materials see Biomechanics in Kinesiology at California State University Long Beach.


Reviews for KIN 300 Scott Fall 2016 Ch 9 lecture notes


Report this Material


What is Karma?


Karma is the currency of StudySoup.

You can buy or earn more Karma at anytime and redeem it for class notes, study guides, flashcards, and more!

Date Created: 09/11/16
KIN 300: Fall 2016 – Week 3 Natalie Wong Ch. 9: “Mechanics of Biological Materials” ***Notes derived from Prof. Scott’s PPT lecture I. Stress = forces applied to an object and material that is loaded that, combined, cause  deformation of the object a. Internal forces resist external forces b. Mechanical Stress = distribution of force that varies based on internal surface; force per  unit of area over which the force acts i. σ (sigma) = F/A = internal force/area of internal surface ii. measured in Pascals (Pa) = N/m 2 iii. Force is proportional to stress  if force increases, stress increases iv. Area is inversely proportional to stress   if area increases, stress decreases c. 3 types of stress: i. Tension/Tensile Stress = axial, or longitudinal, stress that occurs due to a force or load that tends pull apart/elongate/stretch an object from the material in which it is in contact with.  Ex: hanging on a bar ii. Compression Stress = axial, or longitudinal, stress that occurs when a load causes a  press or squeeze on the object, causing a shortening form of deformation  Ex: push up iii. Shear Stress = transverse/horizontal stress that has forces parallel to the object whose  molecules, when force is applied, slide, glide, or rub past each other.  Can cause blisters on skin and possibly joint dislocations or shear fractures of bones  Ex: Scissors II. Mechanical Loads = combination of stresses placed on an object a. Type of load defined by: i. Number of external forces ii. Direction of external forces iii. Location of external forces iv. Shape of the object itself b. Bending = asymmetric loading that produces tension on one side of the longitudinal axis  and compression on the other side c. Torsion = load that produces a twisting of a body around its longitudinal axis d. Combined loads = one or more loads that act on harder connective tissue (i.e. bone and  cartilage) i. softer mechanical connective tissue (i.e. muscles, ligaments, and tendons) = softer  load/1 type of load III. Strain = total deformation of an object a. Linear Strain=amount of deformation that occurs on one plane (goes one direction)  divided by the original length i. ε = (lf– lo)/o KIN 300: Fall 2016 – Week 3 Natalie Wong b. Shear Strain = amount of deformation divided by the original angular orientation of the  structure i. Expressed as λ (lambda) and in radians c. Poisson’s Ratio = ratio of strain in the axial direction to the strain in the transverse  direction i. Exists for every material; set values of how much objects’ strain changes ii. Values from .1­.5 (most materials between .25­.35) d. Stress/Strain Relationship – stress applied is directly related to strain resulted IV. Elastic Behavior vs Plastic Behavior a. Elastic Behavior = strain (x), stress (y); Stretches under tensile load, but returns to original  shape when load is removed i. Linearly elastic = strain increases proportionally to stress ii. Elasticity = E = ∆σ/∆ε = ration of stress to strain iii. The less stress, the more pliant; the more stress, the more stiff and object will be iv. The less strain, the more stiff; the more strain, the less pliant b. Plastic Behavior = deformation (x), load (y) i. The smaller the load  the > elasticity ii. Yield point = elastic limit; point at which deformation becomes permanent iii. Ultimate failure point = when object breaks V. Mechanical Strength = ability to withstand force; strain (x), stress (y) a. Yield strength = stress/strength applied at elastic limit b. Ultimate strength = max amount of force that can be withheld in permanent deformation  without breaking c. Failure strength = break or rupture occurs VI. Failure Strain = strain exhibited by material when it breaks; strain (x), stress (y) a. Stiff and ductile = (curve) less easily deformed b. Brittle = (linear) either withstand stress or break c. Pliant and ductile = (curve) easily deformed VII. Toughness = ability of material to absorb energy a. More tough  more energy to cause a break because there is greater resistance to  deformation VIII. Musculoskeletal System a. Connective Tissue i. Anisotropic = different mechanical properties depending on direction of load  Collagen = fibrous protein that is very stiff with high tensile strength - Unable to withstand compression  collapses or buckles like rope  Elastin = fibrous protein that is pliable and extensible b. Bone i. Carry almost all compressive loads (strongest) and can resist large shear (weakest) and  tensile loads  30­35% collagen = rigid, stiff – contributes to tensile strength when intertwined with  calcium salts  1­2% ground substance = gel­like matrix KIN 300: Fall 2016 – Week 3 Natalie Wong  45% minerals – contribute to compressive strength  20% water  Types: - Cortical/Compact = typically on surface of bones - Cancellous/Spongy/Trabecular = typically deep near the ends of long bones  Bone Strength - Values change from location to location on bone, from bone to bone, and with the  age of bone - Bone = stronger and stiffer IF load is applied quickly but weakly c. Cartilage – can withstand compressive, tensile, and shear loads i. Hyaline/Articular – located at ends of long bones at joints (composed of collagen and  water) ii. Fibrous (fibrocartilage) – within/at edges of some joint cavities and at insertions of  tendons/ligaments to bone iii. Elastic – external ear and other non­musculoskeletal locations d. Tendons and Ligaments i. Components  70% water  25% collagen  5% ground substance/elastin ii. Collagen parallel or mostly parallel along functional axis  stiff/high tensile strength  but little resistance to compression or shear loads  Stress­strain curve = tendon/ligament is pulled with light force = initial deformation  (stretch)  collagen extends  beyond certain load, tendon becomes stiff and resists  stress iii. Ligaments vs tendons  Ligaments have more elastin  less stiff and slightly weaker  Ligaments have less well­aligned fibers  > ability to carry non­axial loads e. Muscle i. Capable of actively contracting to produce tension ii. Stiffness is dependent on the number of active contractile elments iii. Some resistance to passive, slow stretching iv. Stiffness increases when contractile elements no longer overlap


Buy Material

Are you sure you want to buy this material for

25 Karma

Buy Material

BOOM! Enjoy Your Free Notes!

We've added these Notes to your profile, click here to view them now.


You're already Subscribed!

Looks like you've already subscribed to StudySoup, you won't need to purchase another subscription to get this material. To access this material simply click 'View Full Document'

Why people love StudySoup

Jim McGreen Ohio University

"Knowing I can count on the Elite Notetaker in my class allows me to focus on what the professor is saying instead of just scribbling notes the whole time and falling behind."

Kyle Maynard Purdue

"When you're taking detailed notes and trying to help everyone else out in the class, it really helps you learn and understand the I made $280 on my first study guide!"

Steve Martinelli UC Los Angeles

"There's no way I would have passed my Organic Chemistry class this semester without the notes and study guides I got from StudySoup."

Parker Thompson 500 Startups

"It's a great way for students to improve their educational experience and it seemed like a product that everybody wants, so all the people participating are winning."

Become an Elite Notetaker and start selling your notes online!

Refund Policy


All subscriptions to StudySoup are paid in full at the time of subscribing. To change your credit card information or to cancel your subscription, go to "Edit Settings". All credit card information will be available there. If you should decide to cancel your subscription, it will continue to be valid until the next payment period, as all payments for the current period were made in advance. For special circumstances, please email


StudySoup has more than 1 million course-specific study resources to help students study smarter. If you’re having trouble finding what you’re looking for, our customer support team can help you find what you need! Feel free to contact them here:

Recurring Subscriptions: If you have canceled your recurring subscription on the day of renewal and have not downloaded any documents, you may request a refund by submitting an email to

Satisfaction Guarantee: If you’re not satisfied with your subscription, you can contact us for further help. Contact must be made within 3 business days of your subscription purchase and your refund request will be subject for review.

Please Note: Refunds can never be provided more than 30 days after the initial purchase date regardless of your activity on the site.